Methods in molecular biology
-
Opioid analgesics are commonly used for the treatment of acute as well as chronic, moderate to severe pain. Well-known, however, is the wide interindividual variability in sensitivity to opioids that exists, which has often been a critical problem in pain treatment. ⋯ Therefore, revealing the relationship between genetic variations in many candidate genes and individual differences in sensitivity to opioids will provide valuable information for appropriate individualization of opioid doses required for adequate pain control. Although the methodologies for such association studies can be diverse, here we summarize protocols for investigating the association between genetic polymorphisms and sensitivity to opioids in human volunteers and patients undergoing painful surgery.
-
Human embryonic stem cells (hESCs) have the capacity to self-renew and to differentiate into all components of the embryonic germ layers (ectoderm, mesoderm, endoderm) and subsequently all cell types that comprise human tissues. HESCs can potentially provide an extraordinary source of cells for tissue engineering and great insight into early embryonic development. Much attention has been given to the possibility that hESCs and their derivatives may someday play major roles in the study of the development, disease therapeutics, and repair of injuries to the central and peripheral nervous systems. ⋯ Using reduced numbers of mouse embryonic fibroblasts as feeder substrates, these markers of pluripotency are lost quickly and replaced by primarily neuroglial phenotypes with only a few cells representing other embryonic germ layer types remaining. Within the first 2 weeks of co-culture with reduced MEFs, the undifferentiated hESCs show progression from neuroectodermal to neural stem cell to maturing and migrating neurons to mature neurons in a stepwise fashion that is dependent on both the type of hESCs and the density of MEFs. In this chapter, we provide the methods for culturing pluripotent hESCs and MEFs, differentiating hESCs using reduced density MEFs, and phenotypic analyses of this culture system.
-
The heat/capsaicin sensitization and intradermal capsaicin injection models are safe and noninvasive paradigms to generate stable, long-lasting, and reproducible injury capable of producing an area of both primary and secondary hyperalgesia. Risk of skin injury is substantially reduced since lower levels of thermal and chemical irritation produce long-lasting cutaneous hyperalgesia. ⋯ Unlike the heat/capsaicin sensitization model, intradermal capsaicin results in a brief painful stimulus followed by a long lasting area of secondary hyperalgesia. The intradermal injection of capsaicin results in a transient, intense stinging sensation at the site of injection (e.g. heat allodynia) followed by a persistent area of secondary tactile allodynia.
-
A wide variety of bioimaging techniques (e.g., ultrasound, computed X-ray tomography, magnetic resonance imaging (MRI), and positron emission tomography) are commonly employed for clinical diagnostics and scientific research. While all of these methods use a characteristic "energy-matter" interaction to provide specific details about biological processes, each modality differs from another in terms of spatial and temporal resolution, anatomical and molecular details, imaging depth, as well as the desirable material properties of contrast agents needed for augmented imaging. On many occasions, it is advantageous to apply multiple complimentary imaging modalities for faster and more accurate prognosis. ⋯ Multimodal contrast agents offer improvements in patient care, and at the same time can reduce costs and enhance safety by limiting the number of contrast agent administrations required for imaging purposes. Herein, we describe the synthesis and characterization of nanoparticulate-based multimodal contrast agent for noninvasive bioimaging using MRI, optical, and photoacoustic tomography (PAT)-imaging modalities. The synthesis of these agents is described using microemulsions, which enable facile integration of the desired diversity of contrast agents and material components into a single entity.
-
This book is part of the Methods in Molecular Biology series, and provides a general overview of computational approaches used in proteome research. In this chapter, we give an overview of the scope of the book in terms of current proteomics experimental techniques and the reasons why computational approaches are needed. We then give a summary of each chapter, which together provide a picture of the state of the art in proteome bioinformatics research.