Methods in molecular biology
-
Animal models of tissue injury have been used to investigate the mechanisms of pain. Here, we describe a variety of animal models that have been used to mimic acute surgical pain in human subjects, which include the plantar, tail, and gastrocnemius incision models. We also provide discussion on animal models of laparotomy, thoracotomy, visceral pain, and bone injury. Preclinical studies using these models have provided insights into the mechanisms and causes of acute surgical pain as well as the treatment options to control postsurgical pain.
-
Standard therapies for many common cancers remain toxic and are often ineffective. Cellular immunotherapy has the potential to be a highly targeted alternative, with low toxicity to normal tissues but a high capacity to eradicate tumor. ⋯ Many of these approaches are proving successful in hematologic malignancy and in melanoma. In this chapter we discuss the advantages and limitations of each and how over the next decade investigators will attempt to broaden their reach, increase their efficacy, and simplify their application.
-
The study of procedural sedation and analgesia has experienced significant development recently. As specific procedural sedation and analgesia agents have been developed and introduced into clinical practice, safety and efficacy studies have been conducted. ⋯ As procedural sedation and analgesia research has expanded, measurement techniques have been refined to allow for precise comparisons between smaller groups of subjects to improve the capacity to compare these procedures. We have used capnography, bispectral EEG analysis, and subject perceptions of pain and recall as surrogate predictors of adverse events in order to compare agents and procedural techniques in procedural sedation and analgesia.
-
Human embryonic stem cells (hESCs) are pluripotent stem cells derived from the inner cell mass of human blastocysts. hESCs have become a great asset to studying human diseases and genetic functions of healthy organisms. The rate at which hESCs are being used in laboratories is exponentially increasing, and with that, the need for xeno-free hESCs is also increasing. ⋯ However, advances toward a xeno-free hESC environment are still being developed. Replacement of murine feeder layers with extracellular matrix proteins has advanced the research, and some advances toward a serum-free and feeder-free environment for hESCs are described in this chapter.
-
Creating a robust and unbiased assay for the study of current and novel analgesics has been a daunting task. Traditional rodent models of pain and inflammation typically rely on a negative reaction to various forms of evoked stimuli to elicit a pain response and are subject to rater interpretation. ⋯ Rats, following prior administration of an activity-decreasing inflammatory insult, will positively increase spontaneous locomotor exploration when given single doses of known analgesics. The RSAA model capitalizes on a rat's spontaneous exploratory behavior in a novel environment with the aid of computer tracking software to quantify movement and eliminate rater bias.