Human mutation
-
Primary ovarian insufficiency (POI) is a disorder associated with female infertility, which affects approximately 1% of women under 40 years of age. A genetic component has been suggested as one possible cause of the majority of cases of nonsyndromic forms. Newborn Ovary Homeobox (NOBOX) is an ovary-specific gene, playing a critical role in ovary in mice, as its absence leads to sterility mimicking a POI. ⋯ We demonstrated that these mutations compromised the ability of the proteins to bind to and transactivate the well-known growth differentiation factor 9 (GDF9) promoter. The pattern of our findings suggests that the genetic mechanism in humans responsible for POI in women involves haploinsufficiency rather than dominant negative gene action. The identification, characterization, and the very high 6.2% prevalence of these new mutations in POI patients suggest considering NOBOX as the first autosomal candidate gene involved in this syndrome.
-
The imprinted 11p15 region is organized in two domains, each of them under the control of its own imprinting control region (ICR1 for the IGF2/H19 domain and ICR2 for the KCNQ1OT1/CDKN1C domain). Disruption of 11p15 imprinting results in two fetal growth disorders with opposite phenotypes: the Beckwith-Wiedemann (BWS) and the Silver-Russell (SRS) syndromes. Various 11p15 genetic and epigenetic defects have been demonstrated in BWS and SRS. ⋯ To investigate whether cryptic copy number variations (CNVs) involving only part of one of the two imprinted domains account for 11p15 isolated DNA methylation defects, we designed a single nucleotide polymorphism array covering the whole 11p15 imprinted region and genotyped 185 SRS or BWS cases with loss or gain of DNA methylation at either ICR1 or ICR2. We describe herein novel small gain and loss CNVs in six BWS or SRS patients, including maternally inherited cis-duplications involving only part of one of the two imprinted domains. We also show that ICR2 deletions do not account for BWS with ICR2 loss of methylation and that uniparental isodisomy involving only one of the two imprinted domains is not a mechanism for SRS or BWS.
-
This article discusses whether and when researchers have a moral obligation to feedback individual genetic research results. This unsettled debate has rapidly gained in urgency in view of the emergence of biobanks and the advances in next-generation sequencing technology, which has the potential to generate unequalled amounts of genetic data. This implies that the generation of many known and unknown genetic variants in individual participants of genetics/genomics research as intentionally or collaterally obtained byproducts is unavoidable. ⋯ Whereas the default package, containing life-saving information of immediate clinical utility, should be offered routinely and mandatory to all research participants, offering (one of) the three additional packages is context-specific. Such a qualified disclosure policy in our opinion best balances the potential benefits of disclosure with the potential risks for research participants and the harms of unduly hindering biomedical research. We appeal to the genetics community to make a joint effort to further refine the packages and set thresholds for result selection.
-
The molecular genetic cause of over 3,000 monogenic disorders is currently unknown. This review discusses how novel genomic techniques like Next-Generation DNA Sequencing (NGS) and genotyping arrays open new avenues in the elucidation of genetic defects causing monogenic disorders. They will not only speed up disease gene identification but will enable us to systematically tackle previously intractable monogenic disorders. ⋯ Genotyping arrays containing 10⁵ -2×10⁶ single nucleotide polymorphisms (SNPs) and nonpolymorphic markers allow highly accurate mapping of genomic deletions and duplications not detectable by exome sequencing, which are the second most common cause of monogenic disorders. However, several hundred rare, previously unknown sequence variants affecting the amino acid sequence of the encoded protein are found in the exome of every human individual. Therefore, the main challenge will be the differentiation between the many rare benign variants detected by novel genomic techniques and disease causing mutations.
-
Mutations in ABCA12 have been described in autosomal recessive congenital ichthyoses (ARCI) including harlequin ichthyosis (HI), congenital ichthyosiform erythroderma (CIE), and lamellar ichthyosis (LI). HI shows the most severe phenotype. CIE and LI are clinically characterized by fine, whitish scales on a background of erythematous skin, and large, thick, dark scales over the entire body without serious background erythroderma, respectively. ⋯ Combinations of missense mutations in the first ATP-binding cassette of ABCA12 underlie the LI phenotype. ABCA12 is a keratinocyte lipid transporter associated with lipid transport in lamellar granules, and loss of ABCA12 function leads to a defective lipid barrier in the stratum corneum, resulting in an ichthyotic phenotype. Recent work using mouse models confirmed ABCA12 roles in skin barrier formation.