NeuroImage
-
Pseudocontinuous arterial spin labeling (PCASL), a newly proposed perfusion magnetic resonance imaging (MRI) technique, has the potential of providing a better balance between labeling efficiency and signal-to-noise ratio than conventional ASL methods. The advantage will not be exploitable until adequate reproducibility can be achieved. In this study, we investigated the reproducibility of PCASL on twelve healthy volunteers by taking into account the inclusion of correction for coil sensitivity (CS) and labeling efficiency (α). ⋯ With CS correction alone, coefficient of variance (CV) remained larger with PCASL than PASL (p=0.02). CV was 12% with CS-corrected PASL and 11% with PCASL when CS and α were corrected for in conjunction. We concluded that CS correction is necessary for ASL imaging when using phased array receiver and that after CS correction, PCASL requires α correction to provide reproducibility comparable to PASL.
-
The cognitive activity of the human brain benefits from the functional connectivity of multiple brain regions that form specific, functional brain networks. Recent studies have indicated that the relationship between brain regions can be investigated by examining the temporal interaction (known as functional connectivity) of spontaneous blood oxygen level-dependent (BOLD) signals derived from resting-state functional MRI. Most of these studies plausibly assumed that inter-regional interactions were temporally stationary. ⋯ This dynamic pattern was also observed for the interactions between different functional networks. In addition, the spatial pattern of dynamic connectivity maps obtained from neighboring time points had a high similarity. Overall, this study provides insights into the dynamic properties of resting-state functional networks.
-
Characterization and quantification of magnetic resonance perfusion images is important for clinical interpretation, though this calls for a reproducible and accurate method of analysis and a robust healthy reference. The few studies which have examined the perfusion of the healthy brain using dynamic susceptibility contrast (DSC) imaging were largely limited to manual definition of the regions of interest (ROI) and results were dependent on the location of the ROI. The current study aimed to develop a methodology for DSC data analysis and to obtain reference values of healthy subjects. ⋯ Additionally, regional perfusion differences were studied and revealed a prolonged mean transient time and a trend for higher vascularity in the posterior compared with the anterior and middle cerebral vascular territories. While additional studies are required to confirm our findings, this result may have important clinical implications. The proposed unsupervised multiparametric method enabled accurate tissue differentiation, is easy replicable and has a wide range of applications in both pathological and healthy brains.