NeuroImage
-
At rest, brain activity can be characterized not by an absence of organized activity but instead by spatially and temporally correlated patterns of activity. In this experiment, we investigated whether and to what extent resting state functional connectivity is modulated by sex hormones in women, both across the menstrual cycle and when altered by oral contraceptive pills. Sex hormones have been shown to have important effects on task-related activity, but few studies have investigated the extent to which they can influence the behavior of functional networks at rest. ⋯ We found that in the default mode network and in a network associated with executive control, resting state dynamics were altered both by the menstrual cycle and by oral contraceptive use. Specifically, the connectivity of the left angular gyrus, the left middle frontal gyrus, and the anterior cingulate cortex were different between groups. Because the anterior cingulate cortex and left middle frontal gyrus are important for higher-order cognitive and emotional processing, including conflict monitoring, changes in the relationship of these structures to the functional networks with which they interact may have important consequences for attention, affect, and/or emotion regulation.
-
Decreased cerebral blood volume/flow (CBV/CBF) contributes to negative blood-oxygen-level-dependent (BOLD) functional MRI (fMRI) signals. But it is still strongly debated whether these negative BOLD or CBV/CBF signals are indicative of decreased or increased neuronal activity. The fidelity of Ca(2+) signals in reflecting neuronal excitation is well documented. ⋯ This suggests the importance of input activity other than output in triggering the negative CBV signals. These findings indicate that the striatal negative CBV fMRI signals are associated with Ca(2+) increases and Ca(2+)-dependent signaling along the nigrostriatal pathway. The obtained data reveal a new brain road map in response to nociceptive stimulation of hemodynamic changes in association with Ca(2+) signals within the dopaminergic system.
-
Magnetic resonance elastography (MRE) is capable of measuring the viscoelastic properties of brain tissue in vivo. However, MRE is still limited in providing high-resolution maps of mechanical constants. We therefore introduce 3D multifrequency MRE (3DMMRE) at 7T magnetic field strength combined with enhanced multifrequency dual elasto-visco (MDEV) inversion in order to achieve high-resolution elastographic maps of in vivo brain tissue with 1mm(3) resolution. ⋯ MDEV inversion applied to cerebral 7T-3DMMRE data of five healthy volunteers revealed structures of brain tissue in greater anatomical details than previous work. The viscoelastic properties of cortical gray matter (GM) and white matter (WM) could be differentiated by significantly lower values of |G*| and ϕ in GM (21% [P<0.01]; 8%, [P<0.01], respectively) suggesting that GM is significantly softer and less viscous than WM. In conclusion, 3DMMRE at ultrahigh magnetic fields and MDEV inversion open a new window into characterizing the mechanical structure of in vivo brain tissue and may aid the detection of various neurological disorders based on their effects to mechanical tissue properties.
-
Comparative Study
Quantitative comparison of cortical surface reconstructions from MP2RAGE and multi-echo MPRAGE data at 3 and 7 T.
The Magnetization-Prepared 2 Rapid Acquisition Gradient Echo (MP2RAGE) method achieves spatially uniform contrast across the entire brain between gray matter and surrounding white matter tissue and cerebrospinal fluid by rapidly acquiring data at two points during an inversion recovery, and then combining the two volumes so as to cancel out sources of intensity and contrast bias, making it useful for neuroimaging studies at ultrahigh field strengths (≥7T). To quantify the effectiveness of the MP2RAGE method for quantitative morphometric neuroimaging, we performed tissue segmentation and cerebral cortical surface reconstruction of the MP2RAGE data and compared the results with those generated from conventional multi-echo MPRAGE (MEMPRAGE) data across a group of healthy subjects. To do so, we developed a preprocessing scheme for the MP2RAGE image data to allow for automatic cortical segmentation and surface reconstruction using FreeSurfer and analysis methods to compare the positioning of the surface meshes. ⋯ We also found that the thickness estimates were systematically smaller in the MP2RAGE data, and that both the interior and exterior cortical boundaries estimated from the MP2RAGE data were consistently positioned within the corresponding boundaries estimated from the MEMPRAGE data. Therefore several measureable differences exist in the appearance of cortical gray matter and its effect on automatic segmentation methods that must be considered when choosing an acquisition or segmentation method for studies requiring cortical surface reconstructions. We propose potential extensions to the MP2RAGE method that may help to reduce or eliminate these discrepancies.
-
Pain perception is thought to emerge from the integrated activity of a distributed brain system, but the relative contribution of the different network nodes is still incompletely understood. In the present functional magnetic resonance imaging (fMRI) study, we aimed to identify the more relevant brain regions to explain the time profile of the perceived pain intensity in healthy volunteers, during noxious chemical stimulation (ascorbic acid injection) of the left hand. To this end, we performed multi-way partial least squares regression of fMRI data from twenty-two a-priori defined brain regions of interest (ROI) in each hemisphere, to build a model that could efficiently reproduce the psychophysical pain profiles in the same individuals; moreover, we applied a novel three-way extension of the variable importance in projection (VIP) method to summarize each ROI contribution to the model. ⋯ Most of these regions, with the exception of medial thalamus, were also identified by a statistical analysis on mean ROI beta values estimated using the time course of the psychophysical rating as a regressor at the voxel level. Our results provide the first rank-ordering of brain regions involved in coding the perceived level of pain. These findings in a model of acute prolonged pain confirm and extend previous data, suggesting that a bilateral array of cortical areas and subcortical structures is involved in pain perception.