NeuroImage
-
Hypoxia can induce physiological changes. This study aims to explore effects of high-altitude (HA) hypoxia on cerebral iron concentration. Twenty-nine healthy sea-level participants were tested shortly before and after approximately 4-week adaptation to the HA environment at fQinghai-Tibet Plateau (4200m), and were re-investigated after re-adaptation to the sea-level environment one year later. ⋯ Further studies based on diffusion tensor imaging (DTI) suggest that the fractional anisotropy increases and the mean diffusivity decreases after HA exposure in six deep gray matter nuclei, with linear dependence on iron concentration only in putamen. In conclusion, the magnetic susceptibility value can serve as a quantitative marker of brain iron, and variations of regional susceptibility reported herein indicate that HA hypoxia can result in significant iron deposition in most deep gray matter regions. Additionally, the linear dependence of DTI metrics on iron concentration in putamen indicates a potential relationship between ferritin and water diffusion.
-
A number of central nervous system (CNS) diseases exhibit changes in myelin content and magnetic resonance longitudinal, T1, and transverse, T2, relaxation times, which therefore represent important biomarkers of CNS pathology. Among the methods applied for measurement of myelin water fraction (MWF) and relaxation times, the multicomponent driven equilibrium single pulse observation of T1 and T2 (mcDESPOT) approach is of particular interest. mcDESPOT permits whole brain mapping of multicomponent T1 and T2, with data acquisition accomplished within a clinically realistic acquisition time. Unfortunately, previous studies have indicated the limited performance of mcDESPOT in the setting of the modest signal-to-noise range of high-resolution mapping, required for the depiction of small structures and to reduce partial volume effects. ⋯ We demonstrate that this effect is absent in the BMC analysis. Our results also showed improved parameter estimation for BMC as compared to SRC for high-resolution mapping. Overall we find that the combination of BMC analysis and mcDESPOT, BMC-mcDESPOT, shows excellent performance for accurate high-resolution whole-brain mapping of MWF and bi-component transverse and longitudinal relaxation times within a clinically realistic acquisition time.
-
Targeted dorsal root ganglion (DRG) electrical stimulation (i.e. ganglionic field stimulation - GFS) is an emerging therapeutic approach to alleviate chronic pain. Here we describe blood oxygen-level dependent (BOLD) functional magnetic resonance imaging (fMRI) responses to noxious hind-limb stimulation in a rat model that replicates clinical GFS using an electrode implanted adjacent to the DRG. Acute noxious sensory stimulation in the absence of GFS caused robust BOLD fMRI response in brain regions previously associated with sensory and pain-related response, such as primary/secondary somatosensory cortex, retrosplenial granular cortex, thalamus, caudate putamen, nucleus accumbens, globus pallidus, and amygdala. ⋯ Additional control experiments also revealed minimal BOLD fMRI response to GFS at therapeutic intensity when presented in a standard block-design paradigm. High intensity GFS produced a BOLD signal map similar to acute noxious stimulation when presented in a block-design. These findings are the first to identify the specific brain region responses to neuromodulation at the DRG level and suggest possible mechanisms for GFS-induced treatment of chronic pain.
-
Facial expressions attract attention due to their motivational significance. Previous work focused on attentional biases towards threat-related, fearful faces, although healthy participants tend to avoid mild threat. Growing evidence suggests that neuronal gamma (>30Hz) and alpha-band activity (8-12Hz) play an important role in attentional selection, but it is unknown if such oscillatory activity is involved in the guidance of attention through facial expressions. ⋯ We observed an attentional cost of processing the face distractors, as reflected in lower task performance on targets with short stimulus onset asynchrony (SOA <150ms) between faces and targets. On the neuronal level, attentional orienting to face distractors led to enhanced gamma band activity in bilateral occipital and parietal regions, when fearful faces were presented in the same hemifield as targets, but only in short SOA trials. Our findings provide evidence that both top-down and bottom-up attentional biases are reflected in parieto-occipital gamma-band activity.
-
Deep brain stimulation (DBS) of the subgenual cingulate gyrus (area CG25) is beneficial in treatment resistant depression. Though the mechanisms of action of Cg25 DBS remain largely unknown, it is commonly believed that Cg25 DBS modulates limbic activity of large networks to achieve thymic regulation of patients. To investigate how emotional attention is influenced by Cg25 DBS, we assessed behavioral and electroencephalographic (EEG) responses to an emotional Stroop task in 5 patients during ON and OFF stimulation conditions. ⋯ Here, using a simplified neural mass model that did not take explicitly into account the cytoarchitecture of the considered brain regions, we showed that the remote action of Cg25 DBS could be explained by a reduced top-down effective connectivity of the amygdalo-temporo-polar complex. Overall, our results thus indicate that Cg25 DBS during the emotional Stroop task causes a decrease of top-down limbic influence on the ventral visual stream itself, rather than a modulation of prefrontal cognitive processes only. Tuning down limbic excitability in relation to sensory processing might be one of the biological mechanisms through which Cg25 DBS produces positive clinical outcome in the treatment of resistant depression.