NeuroImage
-
A distributed network of brain regions is linked to drug-related cue responding. However, the relationships between smoking cue-induced phasic activity and possible underlying differences in brain structure, tonic neuronal activity and connectivity between these brain areas are as yet unclear. Twenty-two smokers and 22 controls viewed smoking-related and neutral pictures during a functional arterial spin labeling scanning session. ⋯ Similarly, rsFC strength between dlPFC and dmPFC was positively correlated with the cue-elicited activity in dmPFC while rsFC strength between dmPFC and insula/operculum was negatively correlated with the cue-elicited activity in both dmPFC and insula/operculum, suggesting these brain circuits may facilitate the response to the salient smoking cues. Further, the gray matter density in dlPFC was decreased in smokers and correlated with cue-elicited activity in the same brain area, suggesting a neurobiological mechanism for the impaired cognitive control associated with drug use. Taken together, these results begin to address the underlying neurobiology of smoking cue salience, and may speak to novel treatment strategies and targets for therapeutic interventions.
-
The vegetative (VS) and minimally conscious (MCS) states are currently distinguished on the basis of exhibited behaviour rather than underlying pathology. Although previous histopathological studies have documented different degrees of diffuse axonal injury as well as damage to the thalami and brainstem regions in VS and MCS, these differences have not been assessed in vivo, and therefore, do not provide a measurable pathological marker to aid clinical diagnosis. Currently, the diagnostic decision-making process is highly subjective and prone to error. ⋯ The MCS and VS patients differed significantly in subcortical white matter and thalamic regions, but appeared not to differ in the brainstem. Moreover, the DTI results predicted scores on the Coma Recovery Scale (p<0.001) and successfully classified the patients in to their appropriate diagnostic categories with an accuracy of 95%. The results suggest that this method may provide an objective and highly accurate method for classifying these challenging patient populations and may therefore complement the behavioural assessment to inform the diagnostic decision making process.
-
The aim of this study was to compare the relative effectiveness of 6 different commonly used language fMRI activation paradigms, including receptive and expressive, as well as semantic and phonological tasks, for hemispheric lateralization in brain tumor patients utilizing both threshold-dependent and threshold-independent approaches. We studied 46 right-handed patients with primary intra-axial brain tumors with BOLD fMRI on a 3-T MRI system. A linear fit of the laterality indices (LIs) as a function of the t-value (which varied from 2.0 to 6.5) was calculated and the slope (M) taken as measure of LI variability in the threshold-dependent LI approach; for the threshold-independent approach, the LIs were determined by comparing the integrated T-score weighted distributions of all positively task-correlated voxels of the left and the right hemispheric regions of interest. ⋯ Furthermore, R (mean LI value=61.91, M=7.9±1.5) had a higher mean LI value and was less threshold-dependent than SWG (mean LI=52.97, M=11.40±0.64) for LI determination. SWG and R were able to provide effective language lateralization even in the subgroup of patients with lesions located in the left hemisphere and in the frontal or parietal lobes. The receptive language paradigms examined in this study (passive listening [PL], listening comprehension [LC], and reading comprehension [RC]) were less effective than SWG and R for language lateralization.
-
We employed resting-state functional MRI (R-fMRI) to investigate hemisphere- and gender-related differences in the topological organization of human brain functional networks. Brain networks were first constructed by measuring inter-regional temporal correlations of R-fMRI data within each hemisphere in 86 young, healthy, right-handed adults (38 males and 48 females) followed by a graph-theory analysis. ⋯ Moreover, we observed significant hemisphere-related differences in the regional nodal characteristics in various brain regions, such as the frontal and occipital regions (leftward asymmetry) and the temporal regions (rightward asymmetry), findings that are consistent with previous studies of brain structural and functional asymmetries. Together, our results suggest that the topological organization of human brain functional networks is associated with gender and hemispheres, and they provide insights into the understanding of functional substrates underlying individual differences in behaviors and cognition.
-
We present and evaluate a new method for automatically labeling the subfields of the hippocampal formation in focal 0.4 × 0.5 × 2.0mm(3) resolution T2-weighted magnetic resonance images that can be acquired in the routine clinical setting with under 5 min scan time. The method combines multi-atlas segmentation, similarity-weighted voting, and a novel learning-based bias correction technique to achieve excellent agreement with manual segmentation. Initial partitioning of MRI slices into hippocampal 'head', 'body' and 'tail' slices is the only input required from the user, necessitated by the nature of the underlying segmentation protocol. ⋯ Intraclass correlation of volume measurements in CA1 and dentate gyrus is above 0.89. Overlap in smaller hippocampal subfields is lower in magnitude (0.54 for CA2, 0.62 for CA3, 0.77 for subiculum and 0.79 for entorhinal cortex) but comparable to overlap between manual segmentations by trained human raters. These results support the feasibility of subfield-specific hippocampal morphometry in clinical studies of memory and neurodegenerative disease.