NeuroImage
-
Multiple sclerosis (MS) affects both white matter and gray matter (GM). Measurement of GM volumes is a particularly useful method to estimate the total extent of GM tissue damage because it can be done with conventional magnetic resonance images (MRI). Many algorithms exist for segmentation of GM, but none were specifically designed to handle issues associated with MS, such as atrophy and the effects that MS lesions may have on the classification of GM. ⋯ The scan-rescan reproducibility test resulted in a mean coefficient of variation of 1.1% for GM fraction. Tests of the effects of varying the size of MS lesions revealed a moderate and consistent dependence of GM volumes on T2 lesion volume, which suggests that GM volumes should be corrected for T2 lesion volumes using a simple scale factor in order to eliminate this technical artifact. The new segmentation algorithm can be used for improved measurement of GM volumes in MS patients, and is particularly applicable to retrospective datasets.
-
Pain is a complex experience with sensory, emotional and cognitive aspects. It also includes a sympathetic response that can be captured by measuring the electrodermal activity (EDA). The present study was performed to investigate which brain areas are associated with sympathetic activation in experimental pain; an issue that has not been addressed with fMRI (functional magnetic resonance imaging) thus far. ⋯ Furthermore EDA-informed BOLD modeling explained additional signal variance in sensory areas and yielded higher group level activation. We conclude that the sympathetic response to pain is associated with activation in pain-processing brain regions, predominantly in sensory areas and that single trial (EDA)-information can add to BOLD modeling by taking some of the response variability across trials and subjects into account. Thus, EDA is a useful additional, objective index when pain is studied with fMRI/EEG which might be of particular relevance in the context of genetic- and pharmacoimaging.
-
We applied diffusion tensor tractography (DTT), a recently developed MRI technique that reveals the microstructures of tissues based on its ability to monitor the random movements of water molecules, to the visualization of peripheral nerves after injury. The rat sciatic nerve was subjected to contusive injury, and the data obtained from diffusion tensor imaging (DTI) were used to determine the tracks of nerve fibers (DTT). The DTT images obtained using the fractional anisotropy (FA) threshold value of 0.4 clearly revealed the recovery process of the contused nerves. ⋯ The FA values of the peripheral nerves were more strongly correlated with axon-related (axon density and diameter) than with myelin-related (myelin density and thickness) parameters, supporting the theories that axonal membranes play a major role in anisotropic water diffusion and that myelination can modulate the degree of anisotropy. Moreover, restoration of the FA value at the lesion epicenter was strongly correlated with parameters of motor and sensory functional recovery. These correlations of the FA values with both the histological and functional changes demonstrate the potential usefulness of DTT for evaluating clinical events associated with Wallerian degeneration and the regeneration of peripheral nerves.
-
We used the [F-18]FDG micro PET neuroimaging technique to investigate changes in brain activity induced by acute stress in rats. Animals were given immobilization stress for 1 or 2 h, or 1-h stress followed by 1-h recovery, after which their brains were scanned. Plasma corticosterone levels measured at various time points in separate groups of rats showed a rapid increase during stress and slower decrease after termination of the stress. ⋯ Additional brain areas such as the septum and prelimbic cortex now showed deactivation during recovery. Changes in glucose metabolism in the dorsal hippocampus and hypothalamus exhibited a highly significant negative correlation, supporting the view that the hippocampus is involved in regulating the stress response of the hypothalamo-pituitary-adrenal axis. The advantages and limitations of the [F-18]FDG micro PET used in this study are discussed.
-
To determine the time and location of lexico-semantic access, we measured neural activations by magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) and estimated the neural sources by fMRI-assisted MEG multidipole analysis. Since the activations for phonological processing and lexico-semantic access were reported to overlap in many brain areas, we compared the activations in lexical and phonological decision tasks. The former task required visual form processing, phonological processing, and lexico-semantic access, while the latter task required only visual form and phonological processing, with similar phonological task demands for both tasks. ⋯ Previous studies on semantic dementia and neuroimaging studies on normal subjects have shown that this area plays a key role in accessing semantic knowledge. The difference between the tasks appeared in common to all areas in the time windows of 100-150 ms and 400-450 ms, suggesting early differences in visual form processing and late differences in the decision process, respectively. The present results demonstrate that the activations for lexico-semantic access in the left anterior temporal area start in the time window of 200-250 ms, after early visual form processing.