NeuroImage
-
It has been suggested recently that the influence of the neuro-magnetic field should make electrical brain activity directly detectable by MRI. To test this hypothesis, we performed combined EEG-MRI experiments which aim to localize the neuronal current sources of alpha waves (8-12 Hz), one of the most prominent EEG phenomena in humans. A detailed analysis of cross-spectral coherence between simultaneously recorded EEG and MRI time series revealed no sign of alpha waves. ⋯ Separate brain displacement mapping experiments confirmed that not only the EEG but also the MRI signal is confounded by harmonics of the cardiac frequency even at 10 Hz and beyond. This well-known ballistocardiogram artefact cannot be avoided or eliminated entirely by available signal processing techniques. Therefore we must conclude that current EEG-MRI methodology based on correlation analysis lacks not only the sensitivity but also the specificity required for the reliable detection of alpha waves.
-
Many previous neuroimaging studies have shown that the early visual cortex of the early blind (EB) exhibits significant functional plasticity. However, only few previous studies have addressed the question whether or not such functional plasticity is accompanied by, and even related to, structural plasticity. In this study, we acquired high-resolution whole-brain anatomical magnetic resonance images form 14 Chinese EB adults, who lost sight before 6 years of age, and 16 age/gender-matched normal-sighted controls (SC), and compared pixel-by-pixel the gray matter (GM) and white matter (WM) volumes between the two groups with voxel-based morphometry. ⋯ The reduction of GM volume in the early visual cortex of the EB appeared to be unaffected by the age at blindness onset. However, it was found in localized regions of the atrophic early visual cortex of the EB that the GM loss was progressive with aging and increasing duration of blindness. These results suggest that early visual deprivation induces significant structural plasticity in the optic pathway and early visual cortex of the EB, which likely occurs during both the critical period of early neurodevelopment and the course of persisted blindness later in life through activity-dependent mechanisms.
-
Multiple system atrophy (MSA) is a neurodegenerative disease affecting basal ganglia, brainstem, cerebellum, and intermediolateral cell columns of the spinal cord. Clinically, a cerebellar (MSA-C) and a parkinsonian variant of MSA (MSA-P) are distinguished. We used voxel-based morphometry (VBM) and voxel-based relaxometry (VBR) in 48 MSA patients (32 MSA-C, 16 MSA-P) and 46 controls. ⋯ A correlation with disease duration and severity was detected only for some small cortical areas. Direct comparison of MSA-C and MSA-P showed differences only in infratentorial brain regions where structural abnormalities were more pronounced in MSA-C than in MSA-P. In MSA-C, there was a stronger reduction of gray matter in the basal parts of the cerebellum, of white matter in the brainstem and of the relaxation rate R2 in the cerebellum and brainstem.
-
Diffusion tensor imaging (DTI) is used to study tissue composition and architecture in vivo. To increase the signal to noise ratio (SNR) of DTI contrasts, studies typically use more than the minimum of 6 diffusion weighting (DW) directions or acquire repeated observations of the same set of DW directions. Simulation-based studies have sought to optimize DTI acquisitions and suggest that increasing the directional resolution of a DTI dataset (i.e., the number of distinct directions) is preferable to repeating observations, in an equal scan time comparison. ⋯ As long as sampling orientations are well balanced, differences in DTI contrasts due to different DW schemes are shown to be small relative to intra-session variability. These differences are accentuated at low SNR, while minimized at high SNR. This result suggests that typical clinical studies, which use similar protocols but different well-balanced DW schemes, are readily comparable within the experimental precision.
-
Changes of cortical and corticospinal excitability as a function of sleep deprivation have been studied, using EEG power maps and several TMS measures in 33 normal subjects before and after a 40-h sleep deprivation (SD). The effects of SD were independently assessed by subjective and EEG measures of sleepiness, the latter being represented in terms of cortical maps for different frequency bands. Short intracortical facilitation (SICF) and inhibition (SICI) were measured by the paired-pulse TMS technique with different inter-stimulus intervals. ⋯ TMS and EEG measures converge in indicating that SD has severe effects on both cortical and corticospinal excitability, as shown respectively by the increases of slow-frequency EEG power and MTs. The SICF enhancement in females and the results of the combined topographical analysis of EEG and TMS changes are coherent with the hypothesis that cortical TMS-evoked responses are higher as a consequence of a longer wakefulness. However, the lack of an increase in cortical excitability after prolonged wakefulness in males suggests some caution in the generalization of these effects, that deserve further investigation.