NeuroImage
-
Obesity is a crucial public health issue in developed countries, with implications for cardiovascular and brain health as we age. A number of commonly-carried genetic variants are associated with obesity. Here we aim to see whether variants in obesity-associated genes--NEGR1, FTO, MTCH2, MC4R, LRRN6C, MAP2K5, FAIM2, SEC16B, ETV5, BDNF-AS, ATXN2L, ATP2A1, KCTD15, and TNN13K--are associated with white matter microstructural properties, assessed by high angular resolution diffusion imaging (HARDI) in young healthy adults between 20 and 30 years of age from the Queensland Twin Imaging study (QTIM). ⋯ Across the area of significance in the bilateral posterior corona radiata, each additional copy of the risk allele was associated with a 2.2% lower average FA. This is the first study to find an association between an obesity risk gene and differences in white matter integrity. As our subjects were young and healthy, our results suggest that NEGR1 has effects on brain structure independent of its effect on obesity.
-
This study investigates how the interaction of different brain oscillations (particularly theta-gamma coupling) modulates the bottom-up and top-down processes during speech perception. We employed a speech perception paradigm that manipulated the congruency between a visually presented picture and an auditory stimulus and asked participants to judge whether they matched or mismatched. A group of children (mean age 10 years, 5 months) participated in this study and their electroencephalographic (EEG) data were recorded while performing the experimental task. ⋯ This indicates that a fast global processing strategy and a slow detailed processing strategy were differentially adopted in the match and mismatch conditions. This study provides new insight into the mechanisms of speech perception from the interaction of different oscillatory activities and provides neural evidence for theories of speech perception allowing for top-down feedback connections. Furthermore, it sheds light on children's speech perception development by showing a similar pattern of integration of bottom-up and top-down information during speech perception as previous studies have revealed in adults.
-
An emerging field of human brain imaging deals with the characterization of the connectome, a comprehensive global description of structural and functional connectivity within the human brain. However, the question of how functional and structural connectivity are related has not been fully answered yet. Here, we used different methods to estimate the connectivity between each voxel of the cerebral cortex based on functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) data in order to obtain observer-independent functional-structural connectomes of the human brain. ⋯ There were no significant differences between the results obtained from full and partial correlations. Our data suggests that the DMN is the functional brain network, which uses the most direct structural connections. Thus, the anatomical profile of the brain seems to shape its functional repertoire and the computation of the whole-brain functional-structural connectome appears to be a valuable method to characterize global brain connectivity within and between populations.
-
Although researchers generally concur that creativity involves the production of novel and useful products, the neural basis of creativity remains elusive due to the complexity of the cognitive processes involved. Recent studies have shown that highly creative individuals displayed more cognitive flexibility. However, direct evidence supporting the relationship between creativity and cognitive flexibility has rarely been investigated using both structural and functional neuroimaging techniques. ⋯ Moreover, the association between the dACC-mSFG connectivity and CAQ scores was mediated by cognitive flexibility, assessed by a task-switching paradigm. These findings indicate that individual differences in creative achievement are associated with both brain structure and corresponding intrinsic functional connectivity involved in cognitive flexibility and deliberate creative processing. Furthermore, dACC-mSFG connectivity may affect creative achievement through its impact on cognitive flexibility.
-
Emotions are an indispensable part of our mental life. The term emotion regulation refers to those processes that influence the generation, the experience and the expression of emotions. There is a great variety of strategies to regulate emotions efficiently, which are used in daily life and that have been investigated by cognitive neuroscience. ⋯ Compared to the other regulation strategies, Reinterpretation specifically recruited a different control network comprising left ventrolateral prefrontal cortex and orbitofrontal gyrus and was not effective in downregulation of the amygdala. We conclude that Detachment, Distraction and Expressive Suppression recruit very similar emotion regulation networks, whereas Reinterpretation is associated with activation of a qualitatively different network, making this regulation strategy a special one. Notably, Reinterpretation also proved to be the least effective strategy in neural terms, as measured by downregulation of amygdala activation.