European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society
-
The aim of the present study was to explore if (a) recurrent low back pain (LBP) has different symptomatologies in cases from occupations with predominantly sitting postures compared to cases from occupations involving dynamic postures and frequent lifting and (b) if in the two occupational groups, different factors were associated with the presence of recurrent LBP. Hundred and eleven female subjects aged between 45 and 62 years with a long-standing occupation either in administrative or nursing professions, with and without recurrent LBP were examined. An extensive evaluation of six areas of interest (pain and disability, clinical examination, functional tests, MR examination, physical and psychosocial workplace factors) was performed. ⋯ Neither MRI imaging nor self reported physical and psychosocial workplace factors discriminated between LBP cases and controls from both occupational groups. Although we used a battery of tests that have broad application in clinical and epidemiological studies of LBP, a clear difference in the pattern of symptoms between LBP cases from nursing and hospital administration personnel could not be ascertained. We conclude that there is no evidence for different mechanisms leading to non-specific, recurrent LBP in the two occupations, and thus no generalizable recommendations for the prevention and therapy of non-specific LBP in the two professions can be given.
-
In vivo three-dimensional (3D) kinematics of the lumbar spine has not been well evaluated by the conventional methods because of their methodological limitations, while 3D intervertebral motions have been quantitatively determined by cadaver studies. We thus developed a novel 3D analyzing system for the relative motions of individual vertebrae using 3D magnetic resonance imaging (MRI) and analyzed in vivo 3D intervertebral motions of the lumbar spine during trunk rotation. Ten healthy volunteers underwent 3D MRI of the lumbar spine in nine positions with 15 degrees increments during trunk rotation (0 degrees , 15 degrees , 30 degrees , 45 degrees , and maximum). ⋯ Our system has two limitations: (1) the study was conducted with each volunteer in the supine position, and (2) because the rotation device regulated trunk rotation, trunk rotation might not have been physiological. In vivo 3D intervertebral motions of the lumbar spine during trunk rotation were evaluated using our novel motion analysis system. These data may be useful for the optimal orthopaedic management of lumbar spinal disorders.