European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society
-
Comparative Study
Influence of different commercial scaffolds on the in vitro differentiation of human mesenchymal stem cells to nucleus pulposus-like cells.
Cell-based therapies for regeneration of the degenerated intervertebral disc (IVD) are an alternative to current surgical intervention. Mesenchymal stem cells (MSCs), in combination with a scaffold, might be ideal candidates for regenerating nucleus pulposus (NP), the pressure-distributing part of the IVD. While the use of growth factors for MSCs differentiation currently receives major attention, in this study we compare the performance of sponge-like matrixes in supporting cell differentiation into NP-like cells. ⋯ Collagen supports provide a readily available, medically approved and effective scaffold for chondrogenic differentiation in vitro, but the phenotype of differentiated MSCs is not yet completely equivalent to that of NP cells.
-
The aim of the study was to undertake the process of cultural adaptation of the Brace Questionnaire (BrQ) into Polish. ⋯ Polish version of the BrQ is reliable and can be used in adolescents with idiopathic scoliosis wearing the brace to assess their quality of life.
-
To investigate intra- and inter-rater reliability of the ultrasound measurement of transversus abdominis (TrA) thickness and thickness change (difference between thickness at rest and during contraction) in asymptomatic, trained subjects. To define the number of repeated measurements that provide acceptable level of reliability. To investigate variability of the measurements over time of 5 days and the reliability of duplicate analysis of images. ⋯ Two repeated measurements for TrA thickness and at least three measurements for TrA thickness change are needed to achieve acceptable levels of intra- and inter-rater reliability. In healthy trained volunteers TrA thickness and thickness change are relatively stable parameters over a 5-day period. Duplicate analysis of the same images by two blinded observers is reliable.
-
While allowing the greatest range of axial rotation of the entire spine with 40° to each side, gradual restraint at the extremes of motion by the alar ligaments is of vital importance. In order for the ligaments to facilitate a gradual transition from the neutral to the elastic zone, a complex interaction of axial rotation and vertical translation via the biconvex articular surfaces is essential. The aim of this investigation is to establish a geometrical model of the intricate interaction of the alar ligaments and vertical translatory motion of C1/C2 in axial rotation. ⋯ The biconvex configuration of the atlanto-axial joints is an integral feature of the functionality of upper cervical spine as it allows gradual vertical translation of the atlas against the axis during axial rotation, with gradual tensing of the alar ligaments. Vertical translation on its own, however, does not explain the tolerance of the alar ligaments towards the maximum of 40° of rotation and is most likely synergistic with the effects of the coupled motion of occipitocervical extension during rotation.
-
This is a prospective study of adolescent patients in whom idiopathic thoracic scoliosis was corrected by short anterior fusion through a mini-open thoracotomy approach. Clinical, radiological and pulmonary function results of minimal 2-year (2-6) follow-up are presented. ⋯ A good deformity correction without loss of correction or adding on, a good cosmetic result and good patient's satisfaction were achieved through shorter than end-to-end thoracic fusions. The radiological residual deformity is acceptable. Anterior correction of thoracic scoliosis with a short spinal fusion is recommended to keep the large part of the spine mobile. A very short fusion, small thoracotomy incision, low-profile implants and complete closure of parietal pleura are keys to prevent reduction in postoperative lung function.