European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society
-
Alterations of three-dimensional cervical curvature in conventional anterior cervical approach position are not well understood. The purpose of this study was to evaluate alignment changes of the cervical spine in the position. In addition, simulated corpectomy was evaluated with regard to sufficiency of decompression and perforation of the vertebral artery canal. ⋯ In the ER-position, the degrees of right rotation of subaxial vertebrae were small but significant. Therefore, preoperative understanding of this alteration of cervical alignment is essential for performing safe and sufficient anterior corpectomy of the cervical spine.
-
Anterior lumbar interbody fusion (ALIF) is an established treatment for structural instability associated with symptomatic disk degeneration (SDD). Stand-alone ALIF offers many advantages, however, it may increase the risk of non-union. Recombinant human bone morphogenetic protein-2 (BMP-2) may enhance fusion rate but is associated with postoperative complication. The optimal dose of BMP-2 remains unclear. This study assessed the fusion and subsidence rates of stand-alone ALIF using the SynFix-LR interbody cage with 6 ml/level of BMP-2. ⋯ The overall fusion rate of stand-alone ALIF using the SynFix-LR system with BMP-2 was 90.6 %, comparable with other published series. No BMP-2 related complication occurred at a dose of 6 mg/level. Degenerative spondylolisthesis and obesity seemed to increase the rate of implant subsidence, and thus we believe that adding posterior fusion for these cases should be considered.
-
A retrospective review of prospectively collected data in an academic institution. ⋯ The new type of TMC provides comparable clinical results and fusion rates with the traditional TMC for patients undergoing single-level corpectomy. The new design TMC decreases postoperative subsidence (compared to the traditional TMC); the unique design of the new type of TMC matches the vertebral endplate morphology which appears to decrease the severity of subsidence-related neck pain in follow-up.
-
Comparative Study
Biomechanical comparison of vertebral augmentation with silicone and PMMA cement and two filling grades.
Vertebral augmentation with PMMA is a widely applied treatment of vertebral osteoporotic compression fractures. Subsequent fractures are a common complication, possibly due to the relatively high stiffness of PMMA in comparison with bone. Silicone as an augmentation material has biomechanical properties closer to those of bone and might, therefore, be an alternative. The study aimed to investigate the biomechanical differences, especially stiffness, of vertebral bodies with two augmentation materials and two filling grades. ⋯ This study for the first time directly compared the stiffness of silicone-augmented and PMMA-augmented vertebral bodies. Silicone may be a viable option in the treatment of osteoporotic fractures and it has the biomechanical potential to reduce the risk of secondary fractures.
-
Reduced strength and stiffness of lumbar spinal motion segments following laminectomy may lead to instability. Factors that predict shear biomechanical properties of the lumbar spine were previously published. The purpose of the present study was to predict spinal torsion biomechanical properties with and without laminectomy from a total of 21 imaging parameters. ⋯ Vertebral bone content and geometry, i.e. intervertebral disc width, frontal area and facet joint tropism, were found to be strong predictors of ETS, LTS and TMF following laminectomy, suggesting that these variables could predict the possible development of post-operative rotational instability following lumbar laminectomy. Proposed diagnostic parameters might aid surgical decision-making when deciding upon the use of instrumentation techniques.