European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society
-
The pathophysiology of radiculopathy associated with lumbar spinal stenosis and lumbar disc herniation is incompletely understood. The goal of the present study was to establish a chronic spinal nerve root compression model that can mimic lumbar disc herniation or spinal stenosis using silicone tube compression. We also try to link the pathology changes of damaged nerve root with the reaction of microglia in spinal cord in same rat at different time points. ⋯ The chronic spinal nerve root compression with silicone tube produces a recoverable damage to nerve root, which produces recoverable microglial activation in the spinal cord. These results demonstrated that the chronic spinal nerve root compression with silicone tube could mimic the pathological changes of lumbar spinal stenosis or lumbar disc herniation.
-
The pathomechanisms of pain resulting from lumbar disc herniation have not been fully elucidated. Prostaglandins and cytokines generated at the inflammatory site produce associated pain; however, non-steroidal anti-inflammatory drugs and steroids are sometimes ineffective in patients. Tetrodotoxin-sensitive voltage-gated sodium (NaV) channels are related to sensory transmission in primary sensory nerves. The sodium channel NaV1.7 has emerged as an attractive analgesic target. The purpose of this study was to evaluate pain-related behavior and expression of NaV1.7 in dorsal root ganglia (DRG) after combined sciatic nerve compression and nucleus pulposus (NP) application in rats. ⋯ Our results indicate that nerve compression plus NP application produces pain-related behavior. We conclude that NaV1.7 expression in DRG neurons may play an important role in mediating pain from sciatic nerves after compression injury and exposure to NP.