European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society
-
To evaluate the spatial distribution and signal intensity changes following spinal cord activation in patients with spinal cord injury. ⋯ Spinal SEEP fMRI is a powerful noninvasive method for the study of local neuronal activation in the human spinal cord, which may be of clinical value for evaluating the effectiveness of interventions aimed at promoting recovery of function using electrical stimulation.
-
Current standard methods to quantify disc height, namely distortion compensated Roentgen analysis (DCRA), have been mostly utilized in the lumbar and cervical spine and have strict exclusion criteria. Specifically, discs adjacent to a vertebral fracture are excluded from measurement, thus limiting the use of DCRA in studies that include older populations with a high prevalence of vertebral fractures. Thus, we developed and tested a modified DCRA algorithm that does not depend on vertebral shape. ⋯ Using our modified DCRA algorithm, it is not necessary to exclude vertebrae with fracture or other deformity from disc height measurements as in the standard DCRA. Modified DCRA also yields identical measurements to the standard DCRA. Thus, the use of modified DCRA for quantitative assessment of disc height will lead to less missing data without any loss of accuracy, making it a preferred alternative to the current standard methodology.
-
To discuss whether the standard test method for preclinical evaluation of posterior spine stabilization devices with an anterior support correctly describes the effect of two short-segment posterior stabilization techniques frequently used in clinical practice for the treatment of traumatic, degenerative and iatrogenic instabilities. ⋯ ISO model predicts the effects of using both a full and a bridge posterior instrumentation. The study justifies the use of both conditions during in vitro reliability tests to achieve meaningful results easy to compare to clinically relevant loading modes and known in vivo failure modes.
-
Cervical sagittal balance has received increased attention as an important determinant of radiological and clinical outcomes. However, no prospective studies have compared the impact of cervical sagittal balance between anterior and posterior surgeries. We previously conducted a prospective study comparing anterior decompression with fusion (ADF) and laminoplasty (LAMP) for degenerative cervical myelopathy (DCM) and reported; however, analysis of cervical alignment within the concept of sagittal balance has yet to be performed, because that concept has recently been proposed. This study aimed to review this prospective cohort, specifically focusing on cervical sagittal balance. ⋯ Postoperative cervical sagittal alignment and balance were maintained after ADF but deteriorated following LAMP, especially in patients with preoperative CGH-C7 SVA ≥40 mm. In these patients, neurological recovery after LAMP was unsatisfactory. LAMP is not suitable for degenerative cervical myelopathy patients with preoperative cervical sagittal imbalance.
-
To investigate the microscopic fibrous integration between the intervertebral disc, cartilage endplates and vertebral endplates in human lumbar spines of varying degrees of degeneration using differential interference contrast (DIC) optics. Weakness at these junctions is considered to be an important factor in the aetiology of disc herniations. ⋯ This preliminary study shows that microscopic structural features may act to maintain attachment between the IVD and CEP in the human spine. Loss of structural integrity in this region may destabilise the spine, possibly altering the mechanical environment of the cells in the disc and so potentially contribute to the aetiopathogenesis of IVD degeneration.