European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society
-
Magnetic resonance imaging (MRI) is used to detect degenerative changes of the lumbar spine. SpineNet (SN), a computer vision-based system, performs an automated analysis of degenerative features in MRI scans aiming to provide high accuracy, consistency and objectivity. This study evaluated SN's ratings compared with those of an expert radiologist. ⋯ SN is a robust and reliable tool with the ability to grade degenerative features such as PG, SL or CCS in lumbar MRIs with moderate to substantial agreement compared to the current gold-standard, the radiologist. It is a valuable alternative for analyzing MRIs from large cohorts for diagnostic and research purposes.
-
Anterior cervical discectomy and fusion (ACDF) is a common surgical treatment for degenerative disease in the cervical spine. However, resultant biomechanical alterations may predispose to early-onset adjacent segment degeneration (EO-ASD), which may become symptomatic and require reoperation. This study aimed to develop and validate a machine learning (ML) model to predict EO-ASD following ACDF. ⋯ Through an ML approach, the model identified risk factors and predicted development of EO-ASD following ACDF with good discrimination and overall performance. By addressing the shortcomings of traditional statistics, ML techniques can support discovery, clinical decision-making, and precision-based spine care.
-
To propose a fully automated deep learning (DL) framework for the vertebral morphometry and Cobb angle measurement from three-dimensional (3D) computed tomography (CT) images of the spine, and validate the proposed framework on an external database. ⋯ The obtained results are within the range of values, obtained by existing DL approaches without external validation. The results therefore confirm the scalability of the proposed DL framework from the perspective of application to external data, and time and computational resource consumption required for framework training.
-
Artificial intelligence based on deep learning (DL) approaches enables the automatic recognition of anatomic landmarks and subsequent estimation of various spinopelvic parameters. The locations of inflection points (IPs) and apices (APs) in whole-spine lateral radiographs could be mathematically determined by a fully automatic spinal sagittal curvature analysis system. ⋯ The interrater reliability between the proposed DL model and human experts was good to excellent in predicting the locations of IPs, APs, and curvature angles. Future applications should be explored to validate this system and improve its clinical efficiency.