Analytical biochemistry
-
Analytical biochemistry · May 2012
Comparative StudyComparison of enhanced bioluminescence energy transfer donors for protease biosensors.
Bioluminescence energy transfer (BRET) is a powerful tool for the study of protein-protein interactions and conformational changes within proteins. We directly compared two recently developed variants of Renilla luciferase (RLuc), RLuc2 and RLuc8, as BRET donors using an in vitro thrombin assay. The comparison was carried out by placing a thrombin-specific cleavage sequence between the donor luciferase and a green fluorescent protein (GFP(2)) acceptor. ⋯ BRET(2) ratios changed by factors of 18.8±1.2 and 18.2±0.4 for GFP(2)-RG-RLuc2 and GFP(2)-RG-RLuc8 fusion proteins, respectively, on thrombin cleavage compared to 28.8±0.20 for GFP(2)-RG-RLuc. The detection limits for thrombin were 0.23 and 0.26 nM for RLuc2 and RLuc8 BRET(2) systems, respectively, and 15 pM for GFP(2)-RG-RLuc. However, overall, the mutant BRET systems remain more sensitive than FRET and brighter than standard BRET(2).
-
Analytical biochemistry · Mar 2012
Measuring the mechanical properties of blood clots formed via the tissue factor pathway of coagulation.
Thrombelastography (TEG) is a method that is used to conduct global assays that monitor fibrin formation and fibrinolysis and platelet aggregation in whole blood. The purpose of this study was to use a well-characterized tissue factor (Tf) reagent and contact pathway inhibitor (corn trypsin inhibitor, CTI) to develop a reproducible thrombelastography assay. In this study, blood was collected from 5 male subjects (three times). ⋯ In TEG assays, tPA significantly decreased clot strength (maximum amplitude, MA) in all individuals but had no effect on clot time (R time). The intraassay variability (CVa<10%) for R time, angle, and MA suggests that these parameters reliably describe the dynamics of fibrin formation and degradation in whole blood. Our Tf reagent reproducibly induces coagulation, making it an ideal tool to quantify the processes that contribute to mechanical clot strength in whole blood.
-
Analytical biochemistry · Dec 2011
Protein chip for the parallel quantification of high and low abundant biomarkers for sepsis.
We present herein a protein chip for diagnosis of sepsis that combines both a sandwich and a binding inhibition format in order to quantify high (CRP) and low abundant proteins (cytokines, PCT, neopterin) in parallel. Using the combined assay format the lowest detectable concentrations for CRP, IL-6, IL-8, IL-10, TNFα, PCT, and neopterin are 3 mg/L, 15 ng/L, 26 ng/L, 65 ng/L, 40 ng/L, 78 ng/L, and 0.46 μg/L. ⋯ Yet, low limit of detection (LOD) and short processing time are contradictory: while the combined assay performed in a multistep protocol is extremely sensitive (e.g., the LOD for IL-6 is 15 ng/L), but more time-consuming (4 h), the all-in-one protocol takes only 2.5 h, but suffers from lower sensitivity compared with the multistep protocol (e.g., the LOD for IL-6 is up to 40 times enhanced). Reproducibility is good in both cases (CV 5-20%).
-
Analytical biochemistry · Jul 2011
Sequential bioluminescence resonance energy transfer-fluorescence resonance energy transfer-based ratiometric protease assays with fusion proteins of firefly luciferase and red fluorescent protein.
We report here the preparation of ratiometric luminescent probes that contain two well-separated emission peaks produced by a sequential bioluminescence resonance energy transfer (BRET)-fluorescence resonance energy transfer (FRET) process. The probes are single soluble fusion proteins consisting of a thermostable firefly luciferase variant that catalyze yellow-green (560nm maximum) bioluminescence and a red fluorescent protein covalently labeled with a near-infrared fluorescent dye. ⋯ Detection limits of 0.41nM for caspase 3, 1.0nM for thrombin, and 58nM for factor Xa were realized with a scanning fluorometer. Our results demonstrate for the first time that an efficient sequential BRET-FRET energy transfer process based on firefly luciferase bioluminescence can be employed to assay physiologically important protease activities.
-
Analytical biochemistry · Dec 2010
von Hippel-Lindau β-domain-luciferase fusion protein as a bioluminescent hydroxyproline sensor for a hypoxia-inducible factor prolyl hydroxylase assay.
Hypoxia-inducible factor prolyl hydroxylases (HPHs) are responsible for hydroxylation of proline residues in hypoxia-inducible factor-α (HIF-α), resulting in von Hippel-Lindau (VHL)-mediated proteasome degradation of the hydroxylated proteins. Pharmacological inhibition of the enzyme leads to stabilization of HIF-α proteins and consequent activation of HIF, which provides therapeutic benefit for a variety of tissues undergoing ischemic stress. In an effort to develop a new assay for measuring HPH activity, we designed a fusion protein, VHL β-domain-luciferase. ⋯ HPH inhibitory activities of known HPH inhibitors or HIF-1α inducers were assessed using this assay, whose results were in good agreement with those obtained from conventional methods. The competitive effect of 2-ketoglutarate on dimethyloxalylglycine-mediated HPH inhibition was assessed very well in the new assay. Taken together, the VHL β-domain protein with luciferase activity is of use for HPH activity assay.