Gait & posture
-
The purpose of this study was to investigate postural control in children with Autism Spectrum Disorders (ASD) during static and dynamic postural challenges. We evaluated postural sway during quiet stance and the center of pressure (COP) shift mechanism during gait initiation for 13 children with ASD and 12 age-matched typically developing (TD) children. Children with ASD produced 438% greater normalized mediolateral sway (p<0.05) and 104% greater normalized anteroposterior sway (p<0.05) than TD children. ⋯ However, significantly smaller lateral COP shifts (p<0.05) were observed in children with ASD, suggesting instability or an alternative strategy for generating momentum in the mediolateral direction. These results help to clarify some discrepancies in the literature, suggesting an impaired or immature control of posture, even under the most basic conditions when no afferent or sensory information have been removed or modified. Additionally, these findings provide new insight into dynamic balance in children with ASD.
-
In speeding-up normal walking, relative phase between horizontal thorax and pelvis rotations changes from more in-phase (synchronous) to more out-of-phase. In pathology (stroke, Parkinson's disease, low-back pain, pregnancy-related pelvic girdle pain), this often fails to happen. Even in healthy gait, however, these phenomena remain poorly understood. ⋯ From a certain walking speed onwards, pelvis rotations start to contribute to stride length, and thus to speed (the "pelvic step"). This phenomenon appears to be driven, and the present study suggests, at least for higher speeds, that also thoracic counterrotations are driven, and not determined by the passive dynamics of the system. For patients, several strategies may exist to avoid large thorax-pelvis relative phase, and the concomitant large rotations of the spine: walking slowly, walking with small steps, adapting the timing of thorax rotations to that of the pelvis, or refraining from adapting the timing of pelvis rotations to the movements of the leg.
-
The later stages of Parkinson's disease (PD) are characterized by altered gait patterns. Although decreased arm swing during gait is the most frequently reported motor dysfunction in individuals with PD, quantitative descriptions of gait in early PD have largely ignored upper extremity movements. This study was designed to perform a quantitative analysis of arm swing magnitude and asymmetry that might be useful in the assessment of early PD. ⋯ Strikingly, the PD group showed significantly greater arm swing asymmetry (asymmetry angle: 13.9 + or - 7.9%) compared to the control group (asymmetry angle: 5.1 + or - 4.0%; p = 0.003). Unlike arm swing magnitude, arm swing asymmetry unequivocally differs between people with early PD and controls. Such quantitative evaluation of arm swing, especially its asymmetry, may have utility for early and differential diagnosis, and for tracking disease progression in patients with later PD.
-
Sagittal bending moments acting on the lower leg during running may play a role in tibial stress fracture development. The purpose of this study was to evaluate these moments at nine equidistant points along the length of the lower leg (10% point-90% point) during running. Kinematic and ground reaction force data were collected for 20 male runners, who each performed 10 running trials. ⋯ These data suggest that tensile loads on the posterior tibia are likely to be higher toward the distal end of the bone. This finding may explain the higher incidence of stress fracture in the distal aspect of the tibia, observed by some authors. Stress fracture susceptibility will also be influenced by bone strength and this should also be accounted for in future studies.
-
Controlled Clinical Trial
A classification system for delirium subtyping with the use of a commercial mobility monitor.
The usefulness of motor subtypes of delirium is unclear due to inconsistency in subtyping methods and a lack of validation with objective measures of activity. The activity of 40 patients was measured over 24h with a commercial accelerometer-based activity monitor. Accelerometry data from patients with DSM-IV delirium that were readily divided into hyperactive, hypoactive and mixed motor subtypes, were used to create classification trees that were subsequently applied to the remaining cohort to define motoric subtypes. ⋯ The use of a classification system shows how delirium subtypes can be categorised in relation to overall activity and postural changes, which was one of the most discriminating measures examined. The classification system was also implemented to successfully define other patient motoric subtypes. Motor subtypes of delirium defined by observed ward behaviour differ in electronically measured activity levels.