Academic emergency medicine : official journal of the Society for Academic Emergency Medicine
-
The effect of decreasing lab turnaround times on emergency department (ED) efficiency can be estimated through system-level simulation models and help identify important outcome measures to study prospectively. Furthermore, such models may suggest the advantage of bedside or point-of-care testing and how they might affect efficiency measures. ⋯ This simulation model suggests compelling improvement in ED efficiency with decreasing lab turnaround time. Outcomes such as time on EMS diversion, ED LOS, and ED throughput represent important but understudied areas that should be evaluated prospectively. EDs should consider processes that will improve turnaround time, such as point-of-care testing, to obtain these goals.
-
The Institute of Medicine's report "To Err is Human" identified simulation as a means to enhance safety in the medical field, just as flight simulation is used to improve the aviation industry. Yet, while there is evidence that simulation may improve task performance, there is little evidence that simulation actually improves patient outcome. Similarly, simulation is currently used to model teamwork-communication skills for disaster management and critical events, but little research or evidence exists to show that simulation improves disaster response or facilitates intersystem or interagency communication. ⋯ As part of the 2008 Academic Emergency Medicine Consensus Conference on the Science of Simulation, our group sought to identify key research questions that would inform our understanding of simulation's impact at the organizational level. We combined an online discussion group of emergency physicians, an extensive review of the literature, and a "public hearing" of the questions at the Consensus Conference to establish recommendations. The authors identified the following six research questions: 1) what objective methods and measures may be used to demonstrate that simulator training actually improves patient safety? 2) How can we effectively feedback information from error reporting systems into simulation training and thereby improve patient safety? 3) How can simulator training be used to identify disaster risk and improve disaster response? 4) How can simulation be used to assess and enhance hospital surge capacity? 5) What methods and outcome measures should be used to demonstrate that teamwork simulation training improves disaster response? and 6) How can the interface of systems be simulated? We believe that exploring these key research questions will improve our understanding of how simulation affects patient safety, disaster surge capacity, and intersystem and interagency communication.
-
Traditionally, professional expertise has been judged by length of experience, reputation, and perceived mastery of knowledge and skill. Unfortunately, recent research demonstrates only a weak relationship between these indicators of expertise and actual, observed performance. ⋯ DP also involves the provision of immediate feedback, time for problem-solving and evaluation, and opportunities for repeated performance to refine behavior. In this article, we draw upon the principles of DP established in other domains, such as chess, music, typing, and sports to provide insight into developing expert performance in medicine.
-
Virtual reality (VR) environments offer potential advantages over traditional paper methods, manikin simulation, and live drills for mass casualty training and assessment. The authors measured the acquisition of triage skills by novice learners after exposing them to three sequential scenarios (A, B, and C) of five simulated patients each in a fully immersed three-dimensional VR environment. The hypothesis was that learners would improve in speed, accuracy, and self-efficacy. ⋯ Novice learners demonstrated improved triage and intervention scores, speed, and self-efficacy during an iterative, fully immersed VR triage experience.
-
The authors present a novel approach to the use of simulation in medical education with a two-event layered simulation. A patient care simulation with an adverse outcome was followed by a simulated deposition. ⋯ A novel approach to medical education was successful in changing attitudes and provided an expanded educational experience for participants. Layered simulation can be successfully incorporated into educational programs for numerous issues including medical malpractice.