Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Complement activation has been reported after major trauma. However, little is known about the clinical relevance and the mechanisms of complement activation early after trauma. Therefore, the aim of this study was to measure complement activation, to identify the roles of injury severity and hypoperfusion, to determine the predominant activated pathway, and to identify the clinical significance of early complement activation in trauma patients. ⋯ Finally, in patients with low C3a levels, C5b-9 levels correlated with plasma levels of prothrombin fragments 1 + 2, a marker of thrombin generation, suggesting additional C3-independent complement activation by thrombin after severe trauma. In summary, complement activation via its amplification by the alternative pathway is observed early after trauma and correlates with injury severity, tissue hypoperfusion, and worse clinical outcomes. Besides complement activation by the classical and/or lectin pathways, there is an independent association between thrombin generation and complement activation.
-
After severe hemorrhage, low-volume resuscitation with hypertonic fluids is increasingly preferred to more aggressive resuscitation strategies. Oxygen delivery to the tissues may be improved by augmentation with hemoglobin [Hb]-based oxygen-carrying compounds (HBOCs); however, previous studies have reported negative outcomes presumably related to extravasation of tetrameric Hb. The purpose of this study was to evaluate a novel large molecular weight polymer of cross-linked bovine Hb (OxyVita; OXYVITA Inc, New Windsor, NY) in a cocktail of hypertonic saline and Hextend (HX; HBOC-C) as an alternative to standard small-volume resuscitation using Hextend (HX) only. ⋯ However, physiological status at the end of hemorrhage significantly influenced survival regardless of resuscitation treatment. These results suggest that HBOC-augmented hypertonic cocktails are of promise in improving survival and providing target MAP support during small-volume resuscitation. Experimental evaluation of any resuscitation therapy should account for the degree of preexisting physiological compromise before therapy is initiated.
-
Lack of specific and efficient therapy leads to the high mortality rate of acute lung injury (ALI) and acute respiratory distress (ARDS). Recent evidence implies that angiotensin-converting enzyme (ACE) plays an important role in the pathogenesis of ALI. Pharmaceutical inhibitors of ACE have been used clinically for hypertension but not for ALI/ARDS yet. ⋯ Captopril also dramatically reduced the expression of intercellular adhesion molecule-1 in the lung tissue and in the circulating endothelial cells in the blood, indicating a protective effect on endothelial cells activation/damage. Moreover, captopril treatment led to a blockage of nuclear factor kappaB activation in lung tissues and to the recovery of the fibrinolytic disturbance. Thus, our data suggest that the inhibition of ACE with its clinically used inhibitor offers protective effects on ALI/ARDS, implying the potential for therapeutic option.
-
We previously reported that beta-SQAG9 liposome, a sulfonoglycolipid extracted from sea urchin intestines, had a protective effect against hepatic ischemia reperfusion (I/R) injury. In this study, we made a detailed investigation of this protective effect and its mechanism. Rats were pretreated either with beta-SQAG9 liposome (treated group) or with phosphate-buffered saline solution (control group). ⋯ On the other hand, there was no apparent difference in the serum levels and the tissue messenger RNA levels of the proinflammatory cytokines between the two groups. Thus, beta-SQAG9 liposome might reduce the hepatic I/R injury by inhibition of the PMN infiltration into the liver parenchyma, which was independent of the regulation of cytokine production. Moreover, we demonstrated that beta-SQAG9 liposome specifically bound to L-selectin on PMN cell surface, which mediated the PMN infiltration. beta-SQAG9 liposome might competitively antagonize L-selectin on PMNs and suppress the subsequent PMN infiltration, resulting in the reduction in I/R injury.