Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Prostacyclin prevents pulmonary vascular injury and shock by inhibiting increases in lung tissue levels of TNF in rats administered endotoxin. We previously reported that NO derived from eNOS increases endothelial production of prostacyclin. Because neutrophil elastase has been shown to decrease endothelial production of prostacyclin by inhibiting NOS activity, we examined whether neutrophil elastase inhibitors reduce pulmonary vascular injury and hypotension by inhibiting the decrease in pulmonary endothelial production of prostacyclin in rats administered endotoxin. ⋯ These inhibitors also reduced hypotension and inhibited increases in lung tissue levels of mRNA of the inducible form of NOS in animals administered endotoxin. The effects of neutrophil elastase inhibitors were completely reversed by pretreatment with nitro-L-arginine methyl ester, an inhibitor of NOS, or indomethacin, a nonspecific cyclooxygenase inhibitor. These observations suggested that neutrophil elastase might decrease the pulmonary endothelial production of prostacyclin by inhibiting endothelial NO production, thereby contributing to the development of pulmonary vascular injury and shock through increases in lung tissue levels of TNF in rats administered endotoxin.
-
Sepsis is the systemic inflammatory response syndrome secondary to a local infection. Septic shock, the severe complication of sepsis associated with refractory hypotension, is frequently a near-fatal condition requiring prompt diagnosis and management. ⋯ In this review, we will briefly discuss the ongoing standard treatment of septic shock and describe novel potential therapies, aiming to improve hemodynamic support and/or control inflammatory response in sepsis. These therapies were associated with benefits in experimental studies and have been tested or are currently under testing in randomized controlled studies with septic patients.
-
Neutrophils are key effectors of the innate immune response. Reduction of neutrophil migration to infection sites is associated with a poor outcome in sepsis. We have demonstrated a failure of neutrophil migration in lethal sepsis. ⋯ These events culminate in decreased endothelium-leukocyte interactions, diminished neutrophil chemotactic response, and neutrophil migration failure. Additionally, the NO effect, at least in part, is mediated by peroxynitrite. In this review, we summarize what is known regarding the mechanisms of neutrophil migration impairment in severe sepsis.