Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Clinical Trial
Short-term effects of phenylephrine on systemic and regional hemodynamics in patients with septic shock: a crossover pilot study.
Clinical studies evaluating the use of phenylephrine in septic shock are lacking. The present study was designed as a prospective, crossover pilot study to compare the effects of norepinephrine (NE) and phenylephrine on systemic and regional hemodynamics in patients with catecholamine-dependent septic shock. In 15 septic shock patients, NE (0.82 +/- 0.689 microg x kg(-1) x min(-1)) was replaced with phenylephrine (4.39 +/- 5.23 microg x kg(-1) x min(-1)) titrated to maintain MAP between 65 and 75 mmHg. ⋯ In addition, phenylephrine increased arterial lactate concentrations as compared with NE infusion (1.7 +/- 1.0 vs. 1.4 +/- 1.1 mM; P < 0.05). After switching back to NE, all variables returned to values obtained before phenylephrine infusion except creatinine clearance and gastric tonometry values. Our results suggest that for the same MAP, phenylephrine causes a more pronounced hepatosplanchnic vasoconstriction as compared with NE.
-
Increased intestinal/epithelial permeability in sepsis and endotoxemia has been noted to be induced by proinflammatory cytokines such as interferon-gamma, TNF-alpha, and IL-1beta. The p38 mitogen-activated protein kinase (MAPK) signaling pathway plays an important role in regulating the inflammatory response induced by these cytokines. We tested the hypothesis that epithelial permeability changes are regulated through the p38 MAPK signaling pathway. ⋯ Treatment with SB203580 completely blocked p38 activity with transient inhibition of p38 phosphorylation. SB203580 also prevented the CytoMix-induced permeability increase and reduced NO, IL-6, and IL-8 levels. The results suggest that p38 MAPK plays an important role in regulating epithelial barrier function during inflammation.