Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Increased apoptotic cell death is believed to play a pathological role in patients with sepsis and experimental animals. Apoptosis can be induced by either a cell death receptor (extrinsic) or a mitochondrial (intrinsic) pathway. Bid, a proapoptotic member of the Bcl-2 family, is thought to mediate the cross talk between the extrinsic and intrinsic pathways of apoptosis; however, little is known about the action of Bid in the development of apoptosis and organ-specific tissue damage/cell death as seen in polymicrobial sepsis. ⋯ Bid-deficient mice exhibit significantly reduced apoptosis in the thymus, spleen, and Peyer patches compared with background mice after sepsis. Furthermore, Bid-deficient mice had significantly reduced systemic and local inflammatory cytokine levels and improved survival after sepsis. These data support not only the contribution of Bid to sepsis-induced apoptosis and the onset of septic morbidity/mortality, but also the existence of a bridge between extrinsic apoptotic signals, e.g., FasL:Fas, TNF:TNFR, and so on, and the intrinsic mitochondrial pathway via Bid-tBid activation during sepsis.
-
Peroxisome proliferator-activated receptor-beta/delta (PPAR-beta/delta) is a transcription factor that belongs to the PPAR nuclear hormone receptor family. There is little information about the effects of the immediate administration of specific ligands of PPAR-beta/delta (e.g., GW0742) in animal models of myocardial I/R injury. Using a rat model of regional myocardial I/R in vivo, we have investigated the effects of immediate administration of GW0742 on myocardial infarct size. ⋯ The reduction in infarct size afforded by GW0742 was not reduced by the competitive irreversible PPAR-alpha antagonist GW6471 (1 mg/kg i.v., 15 min before ischemia). GW0742 (30 microg/kg i.v.) reduced the I/R-induced (a) decrease in the phosphorylation of Akt and glycogen synthase kinase-3beta, (b) nuclear translocation of the p65 subunit of nuclear factor-kappaB (activation of nuclear factor-kappaB), and (c) increase in the expression of iNOS and cyclooxygenase-2. Thus, immediate administration of the PPAR-beta/delta ligand GW0742 during reperfusion reduces myocardial infarct size in the rat by a mechanism that may involve inhibition of the activity of glycogen synthase kinase-3beta secondary to activation of the Akt pathway.