Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
The use of echocardiography in the intensive care unit for patients in shock allows the accurate measurement of several hemodynamic variables in a noninvasive way. By using echocardiography as a hemodynamic monitoring tool, the clinician can evaluate several aspects of shock states, such as cardiac output and fluid responsiveness, myocardial contractility, intracavitary pressures, and biventricular interactions. However, to date, there have been few guidelines suggesting an objective hemodynamic-based examination in the intensive care unit, and most intensivists are usually not familiar with this tool. In this review, we describe some of the most important hemodynamic parameters that can be obtained at the bedside with transthoracic echocardiography.
-
In the whole world, around 29,000 children younger than 5 years die every day, and sepsis is the most common cause of death. Whereas in adult patients vasomotor paralysis represents the predominant cause of mortality, death in pediatric sepsis is associated with severe hypovolemia and low cardiac output. The purpose of this article was to review the recent evidence on early treatment of pediatric severe sepsis and septic shock. ⋯ Retrospective studies showed, at the same time, the positive effects arising from the utilization of American College of Critical Care Medicine-Pediatric Advanced Life Support guidelines and the existing barriers to its implementation. And one randomized control trial paralleled the results observed in adult patients and revealed that early goal-directed therapy in children is one of the few therapeutic interventions that proved to be beneficial in septic shock treatment. Early goal-directed therapy in pediatric septic shock is a successful method to optimize and parameterize treatment, but there is still a long way to turn septic shock resuscitation simpler and more widely spread.
-
Sepsis develops when the initial host response is unable to contain the primary infection, resulting in widespread inflammation and multiple organ dysfunction. The impairment of neutrophil migration into the infection site, also termed neutrophil paralysis, is a critical hallmark of sepsis, which is directly related to the severity of the disease. Although the precise mechanism of this phenomenon is not fully understood, there has been much advancement in the understanding of this field. In this review, we highlight the recent insights into the molecular mechanisms of neutrophil paralysis during sepsis.
-
Acute kidney injury (AKI) is an important clinical syndrome characterized by abnormalities in the hydroelectrolytic balance. Because of high rates of morbidity and mortality (from 15% to 60%) associated with AKI, the study of its pathophysiology is critical in searching for clinical targets and therapeutic strategies. Severe sepsis is the major cause of AKI. ⋯ TLRs' signaling primes the cells for a robust inflammatory response dependent on NLRs; the interaction of TLRs and NLRs gives rise to the multiprotein complex known as the inflammasome, which in turn activates secretion of mature interleukin 1[beta] and interleukin 18. Experimental data show that innate immune receptors, the inflammasome components, and proinflammatory cytokines play crucial roles not only in sepsis, but also in organ-induced dysfunction, especially in the kidneys. In this review, we discuss the significance of the innate immune receptors in the development of acute renal injury secondary to sepsis.
-
Recent studies have documented the association of mesenteric lymphatic route with adult respiratory distress syndrome and multiple organ failure after hemorrhagic shock. However, the mediators and mechanisms of the toxic effects of mesenteric lymph remain unclear. This study aimed to identify mediators or biomarkers in the mesenteric lymph through comparative proteomic analysis. ⋯ The deregulation of these proteins was confirmed by Western blots. Most of these altered proteins are functionally implicated in tissue inflammation. The findings of this study provide a starting point for investigating the functions of these proteins in hemorrhagic shock-induced lung injury and hold great promise for the development of potential therapeutic interventions.