Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Controlled Clinical Trial
The influence of experimental alcohol load and alcohol intoxication on S100B concentrations.
Because nearly 50% of patients with mild head trauma are alcohol intoxicated, it often remains unclear if the neurological deficits are due to alcohol intoxication or to intracerebral damage. To avoid unnecessary head computed tomography investigations in patients with mild head trauma, S100B is currently used as an exclusion marker for cellular brain damage. However, whether S100B levels are influenced by alcohol itself remains to be unclear. ⋯ In contrast, compared with the control group (n = 60 sober and healthy), the ethyl alcohol-intoxicated patients (n = 61; mean ethyl alcohol, 251 [SD, 87] mg/dL) had higher S100B concentrations (0.193 [SD, 0.45] vs. 0.063 [SD, 0.059] μg/L; P < 0.001), and 39% of them had levels greater than the pathologic cutoff at greater than 0.104 μg/L. However, no significant correlation was found between ethyl alcohol concentrations and S100B within the respective group. Our clinical data suggest that blood alcohol concentrations far in excess of 100 mg/dL are associated with increased S100B levels in alcohol-intoxicated patients.
-
The contribution of the adaptive and innate immune systems to the pathogenesis and outcome of sepsis remains a fundamental yet controversial question. Here, we use mice lacking the recombination activating gene 1 (Rag-1) to study the role of T and B cells in sepsis after cecal ligation and puncture (CLP). Spleens of Rag-1 mice were atrophic and completely devoid of CD3 T cells and CD19 B cells. ⋯ Levels for most mediators were unaffected by the absence of T and B lymphocytes. Only the concentrations of IL-6 and IL-17 were found to be significantly lower in Rag-1 mice compared with wild-type mice. In conclusion, the absence of T and B cells in the CLP model used does not appear to affect the acute outcome of severe sepsis.
-
Mortality from pneumonia is mediated, in part, through extrapulmonary causes. Epidermal growth factor (EGF) has broad cytoprotective effects, including potent restorative properties in the injured intestine. The purpose of this study was to determine the efficacy of EGF treatment following Pseudomonas aeruginosa pneumonia. ⋯ To determine whether the intestine was sufficient to account for extrapulmonary effects induced by EGF, a separate set of experiments was done using transgenic mice with enterocyte-specific overexpression of EGF (IFABP-EGF [intestinal fatty acid-binding protein linked to mouse EGF] mice), which were compared with wild-type mice subjected to pneumonia. IFABP-EGF mice had improved survival compared with wild-type mice following pneumonia (50% vs. 28%, respectively, P < 0.05) and were protected from pneumonia-induced intestinal injury. Thus, EGF may be a potential adjunctive therapy for pneumonia, mediated in part by its effects on the intestine.
-
Glucocorticoids serve as important therapeutic agents in diseases of inflammation, but clinical use, especially in advanced septic shock, remains controversial because of the unpredictable response. Prior studies correlate human glucocorticoid receptor (hGR) isoforms with a decreased response to steroid therapy. Further analysis of additional hGR isoforms may improve the understanding of the steroid response. ⋯ Transactivation studies revealed a SNP within the ligand-binding domain exerted the greatest influence over hyperactivity. In evaluating the response to hydrocortisone, hGR NCBI and hGR NS-1 displayed an increased dose-dependent response, but hGR NS-1 had a response more than twice hGR NCBI. Characterization of the novel hyperactive hGR NS-1 provides insight into a possible mechanism underlying the unpredictable response to steroid treatment.
-
Toll-like receptor 2 (TLR2) has been implicated in neutrophil and cardiac dysfunction during sepsis. Here we tested the hypothesis that nonhematopoietic (parenchymal) and hematopoietic TLR2 play distinct roles in sepsis pathogenesis. To achieve this, we generated two groups of chimeric mice with TLR2 deletions either in nonhematopoietic cells (knockout [KO] mice with wild-type [WT] bone marrow [BM]) or in BM cells (WT mice with KO-BM). ⋯ Moreover, CLP induced a robust ROS production in the peritoneal leukocytes isolated from WT mice but not from TLR2 KO mice. Taken together, these data indicate that TLR2, particularly that of nonhematopoietic cells, plays a major role in sepsis pathogenesis by impairing neutrophil migratory and phagocytic function, promoting cytokine production, and mediating cardiac contractile dysfunction during polymicrobial sepsis. Toll-like receptor 2 also mediates critical ROS production during polymicrobial sepsis.