Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Microdialysis (MD) provides the opportunity to monitor tissue metabolic changes. This study aimed to describe the kinetics of MD-derived metabolites during the course of critical sepsis, to assess whether these metabolites are useful in grading sepsis severity, and to investigate their prognostic use. To this end, 54 mechanically ventilated septic patients were prospectively studied, out of which 39 had shock. ⋯ In conclusion, critical sepsis is characterized by high tissue lactate and pyruvate levels and a preserved lactate-pyruvate ratio, suggesting a nonischemic mechanism for raised blood lactate levels. Septic shock is associated with higher tissue lactate and glycerol levels compared with sepsis without shock. Elevated tissue lactate, pyruvate, and glycerol levels are related to poor clinical outcome, with the latter constituting an independent predictor.
-
Experimental data have shown that mesenteric lymph from rats subjected to trauma-hemorrhagic shock (THS) but not trauma-sham shock induces neutrophil activation, cytotoxicity, decreased red blood cell (RBC) deformability, and bone marrow colony growth suppression. These data have led to the hypothesis that gut factors produced from THS enter the systemic circulation via the mesenteric lymphatics and contribute to the progression of multiple organ failure after THS. Ongoing studies designed to identify bioactive lymph agents implicated factors associated with the heparin use in the THS procedure. ⋯ Finally, incubation of HUVECs with purified lipoprotein lipase added to naive lymph-induced toxicity in vitro. These data show that heparin, not THS, is responsible for the reported lymph-mediated HUVEC toxicity through its release of lipases into the lymph. These findings can provide alternative explanations for several of the THS effects reported in the literature using heparin models, thus necessitating a review of previous work in this field.
-
Liver X receptor α (LXRα) is a nuclear transcription factor that regulates lipid metabolism. Recently, it has been shown that activation of LXRα with synthetic ligands has anti-inflammatory effects in atherosclerosis and chemical-induced dermatitis. We investigated the effect of the LXRα agonist, T0901317, on lung inflammation in a rodent model of hemorrhagic shock. ⋯ Lung injury and neutrophil infiltration were reduced by treatment with T0901317, as evaluated by histology and myeloperoxidase assay. At molecular analysis, treatment with T0901317 increased nuclear LXRα expression and DNA binding while also inhibiting activation of nuclear factor κB, a proinflammatory transcription factor, in the lung. Thus, our data suggest that LXRα is an important modulator of the inflammatory response and lung injury after severe hemorrhagic shock, likely through the inhibition of the nuclear factor κB pathway.
-
Disseminated intravascular coagulation contributes to mortality of sepsis. The study was performed to investigate thromboelastometry as a potential predictor of 30-day survival in severe sepsis and to compare thromboelastometry to Simplified Acute Physiology Score II (SAPS II) and Sequential Organ Failure Assessment (SOFA) scores. Ninety-eight patients with severe sepsis were included in the cohort study. ⋯ Thromboelastometry values were normal if CFT was less than 185 s, MCF was greater than 55 mm, and α was greater than 57.5 degrees. Thirty-day survival was 85.7% when all thromboelastometry variables were normal, but 58.7% when at least one variable was pathological (P = 0.005). Multivariate analysis revealed that the absence or presence of at least one pathological thromboelastometry variable allows for better prediction of 30-day survival in severe sepsis than the SAPS II and SOFA scores (P = 0.01; odds ratio, 4.1), respectively, emphasizing the importance of the coagulation system in sepsis.
-
Femoral venous access is frequently used in critically ill patients. Because raised intra-abdominal pressure (IAP) is also frequently found in this group of patients, we examined the impact of IAP and positive end-expiratory pressure (PEEP) on femoral venous pressure (FVP) and femoral venous oxygen saturation (Sfvo2) in an animal model. Thirteen adult pigs received standardized anesthesia and ventilation. ⋯ However, a raised FVP should prompt the measurement of the bladder pressure. Femoral venous oxygen saturation did correlate neither with Svo2 nor with abdominal perfusion pressure. Therefore, Sfvo2 is of no clinical use in the setting of raised IAP.