Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Excessive endoplasmic reticulum stress (ERS) disrupts protein translation, protein folding, and calcium homeostasis and may contribute to ischemia-reperfusion injury. Saponins extracted from the stems and leaves of Panax quinquefolium (PQS) protect rat myocardium against ischemia-reperfusion injury, but it is not known if suppression of ERS contributes to cardioprotection. Neonatal rat cardiomyocytes were subjected to hypoxia-reoxygenation (H-R) in the presence of PQS or vehicle. ⋯ We confirmed that PQS protects cardiomyocytes from H-R-induced injury and apoptotic cell death. Furthermore, PQS suppressed H-R-induced excessive ERS, as evidenced by reduced caspase 12 activation and decreased glucose-regulated protein 78, calreticulin, and CCAAT/enhancer-binding protein homologous protein overexpression. These results indicated that PQS could alleviate H-R injury of cardiomyocytes, which would be probably related to inhibiting excessive ERS induced by H-R.
-
Lipocalin-2 (LCN-2) is a 25-kDa secretory protein currently used as a biomarker for renal injury and inflammation. Its source and cause of the increased serum levels are unclear. The current study compares LCN-2 gene expression with known major acute-phase proteins in the liver in a rat and mouse model of turpentine oil-induced sterile abscess. ⋯ Lipocalin-2 is the major acute-phase protein in rat as compared with α₂-macroglobulin and hemoxygenase 1 and comparable with serum amyloid A in mouse whose gene expression is mainly controlled by interleukin 6. The liver is the main source of serum LCN-2 in the case of APR. ABBREVIATIONS-LCN-2-lipocalin-2-α₂M-α₂-macroglobulin-HO-1-hemoxygenase 1-IL-6-interleukin 6-SAA-serum amyloid A-TO-turpentine oil-APR-acute-phase reaction.