Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Despite being protective in many disease states, hydrogen sulfide (H(2)S) contributes to organ injury in sepsis. Like the other gasotransmitters, nitric oxide and carbon monoxide, H(2)S is a modulator of the microcirculation. Because microcirculatory dysfunction is a main cause of organ injury during sepsis, the present study was designed to test the effect of H(2)S on microvascular dysfunction in isolated perfused livers. ⋯ In summary, the discrepancies between the hepatic response to PE and ET-1 suggest that H(2)S differentially contributes to microcirculatory dysfunction in the systemic and hepatic microcirculations. We propose that this is due to H(2)S exerting a differential vasoactive function on presinusoidal and sinusoidal sites within the liver. Moreover, our findings suggest that H(2)S may contribute to the progression of sepsis by contributing to microvascular failure.
-
Hemorrhagic shock (HS)-induced microvascular hyperpermeability poses a serious challenge in the management of trauma patients. Microvascular hyperpermeability occurs mainly because of the disruption of endothelial cell adherens junctions, where the "intrinsic" apoptotic signaling plays a regulatory role. The purpose of this study was to understand the role of the "extrinsic" apoptotic signaling molecules, particularly Fas-Fas ligand interaction in microvascular endothelial barrier integrity. ⋯ FasFc treatment showed protection against HS serum-induced disruption of the adherens junctions and monolayer hyperpermeability (P < 0.05) in the endothelial cells. Pretreatment with FasFc also decreased HS serum-induced increase in mitochondrial reactive oxygen species formation, restored HS serum-induced drop in mitochondrial transmembrane potential, and reduced HS serum-induced caspase 3 activity in RLMECs. These findings open new avenues for drug development to manage HS-induced microvascular hyperpermeability by targeting the Fas-Fas ligand-mediated pathway.
-
The objective of this study was to determine the effects of a TREM (triggering receptor expressed on myeloid cells 1)-like transcript 1-derived peptide (LR12) administration during septic shock in pigs. Two hours after induction of a fecal peritonitis, anesthetized and mechanically ventilated adult male minipigs were randomized to receive LR12 (n = 6) or its vehicle alone (normal saline, n = 5). Two animals were operated and instrumented without the induction of peritonitis and served as controls (sham). ⋯ These disorders were largely attenuated by LR12. In particular, cardiovascular failure was dampened as attested by a better mean arterial pressure, cardiac index, cardiac power index, and S(v)O(2), despite lower norepinephrine requirements. LR12, a TREM-like transcript 1-derived peptide, exhibits salutary properties during septic shock in adult minipigs.
-
Our objectives were to determine the incidence of critical illness-related corticosteroid insufficiency (CIRCI) in patients with septic shock using a 1 μg corticotropin (ACTH) test and to describe their clinical outcomes. We retrospectively identified 219 consecutive patients with septic shock assessed for CIRCI with a 1 μg ACTH test. Standardized testing involved plasma cortisol measurements at baseline (T0) and at 30 min (T30) and 60 min (T60) after ACTH administration. ⋯ The incidence of CIRCI based on 1 μg ACTH was high in this septic shock cohort. The highest mortality rates were observed in patients with high baseline cortisol and in those who failed to respond appropriately to ACTH. The administration of corticosteroids was not associated with a reduction in mortality.
-
We hypothesized that pretreatment with single-dose cyclosporine (CsA) prevents alterations and improves tissue oxygen and mitochondrial cytochrome oxidase redox (CytOx) state in skeletal muscle ischemia and reperfusion-reoxygenation (I/R). Latissimus dorsi muscle was prepared and mobilized in New Zealand white rabbits. Ischemia was induced for 4 h, followed by 2 h of reperfusion. ⋯ Muscle HEP levels (phosphocreatine, adenosine triphosphate) were significantly preserved in the CsA group versus the control group (P < 0.01, P < 0.05). Mitochondrial viability index and wet-to-dry ratio confirmed significantly preserved tissue and lower edema formation in the CsA group. The pretreatment with single-dose CsA prevents alterations and improves tissue oxygenation and mitochondrial oxidation in skeletal muscle I/R.