Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Bronchiolitis obliterans organizing pneumonia (BOOP), a morbid condition when associated with lung transplant and chronic lung disease, is believed to be a complication of ischemia. Our goal was to develop a simple and reliable model of lung ischemia in the Sprague-Dawley rat that would produce BOOP. Unilateral ischemia without airway occlusion was produced by an occlusive slipknot placed around the left main pulmonary artery. ⋯ Toll-like receptor 4 expression was increased in ischemic left lungs over right. An occlusive slipknot around the main left pulmonary artery in rats produces BOOP, providing direct evidence that ischemia without immunomodulation or coinfection is sufficient to initiate this injury. It also affords an excellent model to study signaling and genetic mechanisms underlying BOOP.
-
Postconditioning prevents cardiomyocytes from ischemia/reperfusion-induced apoptosis. However, little is known about the molecular mechanisms that mediate the cardioprotective effect of postconditioning. ⋯ In addition, p53 is involved in the regulatory role of postconditioning in PUMA expression. Our data reveal a cardioprotective pathway of postconditioning in which it represses PUMA.
-
A recent study showed that the injection of mitochondria isolated from a nonischemic region mitigated myocardial injury. We tested the protective effects of infusing isolated mitochondria on the reperfusion injury in the liver of rats. A partial liver ischemia-reperfusion (I/R) model in male Wistar rats was used. ⋯ Our results show that the elevation of serum alanine aminotransferase (414.3 ± 67.1 vs. 208.8 ± 30.2 U/L), the necrosis of hepatocytes on hematoxylin-eosin staining, increase in positive counts in TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) staining (59.5% ± 4.4% vs. 24.6% ± 9.1%), the expression of cytosolic cytochrome c, cleaved caspase 9, and 4-hydroxynonenal were all reduced in the I/R-mito group, compared with the I/R-vehicle group. The membrane potential of the isolated mitochondria measured by JC-1 fluorescence remained high, and the infused mitochondria were distributed in the liver parenchyma at 240 min after reperfusion. These results demonstrate that an intrasplenic infusion of viable mitochondria isolated from the donor before reperfusion significantly reduced I/R injury in the liver.
-
The aim of the present study was to examine the effect and possible mechanism of salvianolic acid B (SalB) on pulmonary microcirculation disturbance induced by lipopolysaccharide (LPS) in rat. Male Sprague-Dawley rats were subjected to thoracotomy under continuous anesthesia and mechanical ventilation. Albumin leakage from pulmonary capillary and the numbers of leukocytes adherent to the pulmonary capillary wall were determined for 60 min by an upright microscope upon LPS (2 mg · kg(-1) · h(-1)) infusion with or without administration of SalB (5 mg · kg(-1) · h(-1)). ⋯ In addition, LPS increased pulmonary tissue wet-to-dry weight ratio and tumor necrosis factor α and interleukin 8 levels in plasma and bronchoalveolar lavage fluid enhanced the expression of E-selectin, intercellular adhesion molecule 1, myeloperoxidase, MMP-2, and MMP-9, whereas it decreased the expression of AQP-1 and AQP-5 in pulmonary tissue, all of which were attenuated by SalB pretreatment. Salvianolic acid B pretreatment improves pulmonary microcirculation disturbance and lung injury on LPS exposure. More studies are required to evaluate the potential of SalB as an option for protecting lung from endotoxemia.