Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Comparative Study
Hemostatic function of apheresis platelets stored at 4 °C and 22 °C.
Platelet refrigeration decreases the risk of bacterial contamination and may preserve function better than standard-of-care room temperature (RT) storage. Benefits could include lower transfusion-related complications, decreased costs, improved hemostasis in acutely bleeding patients, and extended shelf life. In this study, we compared the effects of 22°C and 4°C storage on the functional and activation status of apheresis platelets. ⋯ Apheresis platelets stored at 4°C maintain more viable metabolic characteristics, are hemostatically more effective, and release fewer proinflammatory mediators than apheresis platelets stored at RT over 5 days. Given the superior bacteriologic safety of refrigerated products, these data suggest that cold-stored platelets may improve outcomes for acutely bleeding patients.
-
Trauma-induced coagulopathy (TIC) occurs early after severe injury. TIC is associated with a substantial increase in bleeding rate, transfusion requirements, and a 4-fold higher mortality. Rapid surgical control of blood loss and early aggressive hemostatic therapy are essential steps in improving survival. ⋯ The effect of prehospital fibrinogen concentrate administration on outcome in major trauma patients is the subject of an ongoing prospective investigation. The use of prothrombin complex concentrate is potentially helpful in patients anticoagulated with vitamin K antagonists who experience substantial trauma or traumatic brain injury. Beyond emergency reversal of vitamin K antagonists, safety data on prothrombin complex concentrate use in trauma are lacking.
-
This review is a synopsis of the decisions that shaped global policy on platelet (PLT) storage temperature and a focused appraisal of the literature on which those discussions were based. We hypothesize that choices were centered on optimization of preventive PLT transfusion strategies, possibly to the detriment of the therapeutic needs of acutely bleeding patients. Refrigerated PLTs are a better hemostatic product, and they are safer in that they are less prone to bacterial contamination. ⋯ Data from two randomized controlled trials bring into question the concept that stable autologous stem cell transplant patients with hypoproliferative thrombocytopenia should continue to receive prophylactic transfusions. At the same time, new findings regarding the efficacy of cold PLTs and their potential role in treating acute bleeding have revived the debate regarding optimal PLT storage temperature. In summary, a "one-size-fits-all" strategy for PLT storage may not be adequate, and a reexamination of whether cold-stored PLTs should be offered as a widely available therapeutic product may be indicated.
-
The Trauma Hemostasis and Oxygenation Research Network held its third annual Remote Damage Control Resuscitation Symposium in June 2013 in Bergen, Norway. The Trauma Hemostasis and Oxygenation Research Network is a multidisciplinary group of investigators with a common interest in improving outcomes and safety in patients with severe traumatic injury. The network's mission is to reduce the risk of morbidity and mortality from traumatic hemorrhagic shock, in the prehospital phase of resuscitation through research, education, and training. ⋯ The prehospital phase of resuscitation is critical in these patients. If shock and coagulopathy can be rapidly identified and minimized before hospital admission, this will very likely reduce morbidity and mortality. This position statement begins to standardize the terms used, provides an acceptable range of therapeutic options, and identifies the major knowledge gaps in the field.
-
Autophagy plays a protective role in endotoxemic mice. Heat shock factor 1 (HSF-1) also plays a crucial protective role in endotoxemic mice by decreasing inflammatory cytokines. The purpose of this study was to determine whether HSF-1 is involved in attenuating the release of inflammatory cytokines in lipopolysaccharide (LPS)-stimulated mice and peritoneal macrophages (PMs) through regulating autophagy activity. ⋯ Interestingly, LPS-induced release of inflammatory cytokines did not further increase in HSF-1(-/-) PMs treated with 3-MA but aggravated in HSF-1(+/+) PMs. Lipopolysaccharide-induced autophagy did not decrease in HSF-1(-/-) PMs treated with 3-MA but decreased in HSF-1 PMs(+/+). Taken together, our results suggested that HSF-1 attenuated the release of inflammatory cytokines induced by LPS by regulating autophagy activity.