Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Unrecognized hemorrhage and unguided resuscitation is associated with increased perioperative morbidity and mortality. The authors investigated peripheral venous waveform analysis (PIVA) as a method for quantitating hemorrhage as well as iatrogenic fluid overload during resuscitation. ⋯ In this study, PIVA demonstrated a greater sensitivity for detecting acute hemorrhage, return to euvolemia, and iatrogenic fluid overload compared with standard monitoring and SI. PIVA may provide a low-cost, minimally invasive monitoring solution for monitoring and resuscitating patients with perioperative hemorrhage.
-
Although the burden of septic acute kidney injury continues to increase, the molecular pathogenesis remains largely obscure. The aim of this exploratory study was a discovery-driven analysis of dynamic kidney tissue protein expression changes applied for the first time in a classic large mammal model of sepsis. To achieve this goal, analyses of protein expression alterations were performed in serial samples of kidney cortical biopsies (before, 12 and 22 h of sepsis) in mechanically ventilated pigs challenged with continuous infusion of pseudomonas aeruginosa and compared with sham-operated control data. ⋯ The data implicate endoplasmic reticulum stress, oxidative stress, mitochondrial energy metabolism, immune/inflammatory signaling, and tubular transport as major activated pathways. Thus, by coupling the power of sequential tissue proteomics with whole-animal physiological studies, our study helped to establish a first global overview of critical renal proteomic events occurring during surgical trauma and early sepsis in a porcine model. The study supports the notion that multiple potentially subtle and even transient changes in several proteins which are members of key functional interrelated systems appear to play a role in septic acute kidney injury.
-
Endothelial pathology is considered to play a key role in septic shock. Since endothelial-derived microvesicles (MV) are elevated in various diseases associated with endothelial pathology, they are considered surrogate markers of the endothelial state. By analyzing the signature of circulating MV with high-sensitivity flow cytometry (hsFC), we wanted to test the hypothesis whether endothelial-derived MV are increased in septic shock. ⋯ Despite an improved detection limit for MV by using hsFC, counts of endothelial-specific MV are unexpectedly low in patients with septic shock. Increased amounts of CD41+ and CD31+/CD41-/AnnexinV- MV indicate release by activated platelets and possibly leukocytes correlating with unfavorable outcome.
-
Septic shock-related kidney failure is characterized by almost normal morphological appearance upon pathological examination. Endothelial barrier disrupture has been suggested to be of crucial importance for septic shock-induced organ dysfunction. Therefore, in murine resuscitated cecal ligation and puncture (CLP)-induced septic shock, we tested the hypothesis whether there is a direct relationship between the kidney endothelial barrier injury and renal dysfunction. ⋯ When plotted against CrCl and neutrophil gelatinase-associated lipocalin levels, extravascular albumin accumulation, and tissue expression of the vascular endothelial growth factor and angiopoietin-1 showed significant mathematical relationships related to kidney (dys)function. Preservation of the constitutive expression of the hydrogen sulfide producing enzyme cystathione-γ-lyase was associated with maintenance of organ function. The direct quantitative relation between microvascular leakage and kidney (dys)function may provide a missing link between near-normal tissue morphology and septic shock-related renal failure, thus further highlighting the important role of vascular integrity in septic shock-related renal failure.
-
Lung ischemia-reperfusion injury (LIRI) occurs in various clinical situations, such as transplantation, cardio pulmonary bypass, cardiac arrest, and major trauma, leading to significant morbidity and mortality. Despite researchers having spent years of effort to investigate the pathogenesis of pulmonary ischemic injury, the concrete cellular and molecular mechanisms are still unknown. We hypothesized that toll-like receptor (TLR) 3 signaling may play a vital role in inflammation responses, apoptosis, and pulmonary dysfunction during LIRI. ⋯ Pulmonary apoptosis was also inhibited after TLR3 knockout, as indicated by cleaved caspase-3 western blot and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Levels of serum microRNAs (miRNAs), especially miRNA155, were decreased in the TLR3 I/R group compared with that of the WT I/R group. In conclusion, these data suggest that TLR3 signaling pathway may be a promising target for the treatment of lung I/R injury.