Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Traumatic hemorrhage is the leading cause of preventable death after trauma. Early transfusion of plasma and balanced transfusion have been shown to optimize survival, mitigate the acute coagulopathy of trauma, and restore the endothelial glycocalyx. There are a myriad of plasma formulations available worldwide, including fresh frozen plasma, thawed plasma, liquid plasma, plasma frozen within 24 h, and lyophilized plasma (LP). ⋯ Findings show that sterile water buffered with ascorbic acid results in decreased blood loss with suppression of systemic inflammation. We are now beginning to realize the creation of a plasma-derived formulation that rapidly produces the associated benefits without logistical or safety constraints. This review will highlight the history of plasma, detail the various types of plasma formulations currently available, their pathophysiological effects, impacts of storage on coagulation factors in vitro and in vivo, novel concepts, and future directions.
-
To investigate whether myofibrillogenesis regulator 1 (MR-1) attenuates renal ischemia/reperfusion (I/R) injury via inhibiting phosphorylated Akt (p-Akt) mitochondrial translocation-mediated opening of the mitochondrial permeability transition pore (mPTP), we injected adenovirus containing MR-1 gene or its siRNAs to the left kidney subcapsular areas of Sprague-Dawley rats, which subsequently underwent experimental renal I/R injury. Renal functions and the severity of the tubular injury were evaluated by the serum creatinine and blood urea nitrogen levels and the pathological scores. We also examined the mitochondrial morphology and functions. ⋯ Wortmannin, a phosphatidylinositol 3 kinase (PI3K) inhibitor, abolished both mitochondrial p-Akt recruitment and the protective effect of MR-1 overexpression on I/R injury. To conclude, MR-1 protects kidney against I/R injury through inhibiting mPTP opening and maintaining mitochondrial integrity, through the recruitment of PI3K-dependent p-Akt to the mitochondria. MR-1 could be a new therapeutic strategy for renal I/R injury.
-
Currently, over 10% of the US population is taking antidepressants. Numerous antidepressants such as amitriptyline are known to inhibit acid sphingomyelinase (Asm), an enzyme that is known to mediate leukocyte function and homeostasis. Severe burn injury can lead to an immunosuppressive state that is characterized by decreased leukocyte function and numbers as well as increased susceptibility to infection. ⋯ We also demonstrate that amitriptyline treatment prior to injury reduced neutrophil accumulation following peptidoglycan stimulus in scald-injured mice. These data show that Asm alterations can play a significant role in mediating alterations to the immune system after injury. The data further suggest that those taking antidepressants may be at a higher risk for complications following burn injury.
-
Randomized Controlled Trial Multicenter Study
Effects of Increasing Hydrocortisone to 300 MG per Day in the Treatment of Septic Shock: A PILOT STUDY.
The Surviving Sepsis Campaign guidelines recommend hydrocortisone in septic shock only when fluid resuscitation and vasopressors fail to restore hemodynamic stability. Hydrocortisone administration modalities are supported only by low-grade recommendations. Our main objective here was to determine differences in 28-day mortality between two low-dose hydrocortisone regimens for the treatment of septic shock. ⋯ We found no differences in mortality or adverse events between the two hydrocortisone administration regimens. Shock relapse was significantly associated with the persistence of infection and the use of etomidate.
-
Photoacoustic (PA) imaging is an emerging technology that combines structural and functional imaging of tissues using laser and ultrasound energy. We evaluated the ability of PA imaging system to measure real-time systemic and microvascular mean oxygen saturation (mSAO2) in a rat model of hypoxic shock. Male Sprague Dawley rats (n = 6) underwent femoral artery catherization and were subjected to acute hypoxia by lowering the fraction of inspired oxygen (FiO2) from 1.0 to 0.21, and then to 0.08. ⋯ Moreover, we detected a rapid return toward baseline mSaO2 in the feed arteriole and microvessels when FiO2 was increased from 0.08 to 1.0. Thus, PA imaging is noninvasive imaging modality that can accurately measure real-time oxygen saturation in the macro and microcirculation during acute hypoxia. This proof-of-concept study is a first step in establishing PA imaging as an investigational tool in critical illness.