Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Receptor interacting protein kinase-3 (RIP3) is a key mediator of necroptosis, a form of regulated cell death recently implicated in murine models of renal ischemia-reperfusion injury and transfusion-associated endothelial injury. The importance of necroptosis in human AKI is unknown. We hypothesized that plasma RIP3 concentrations would be associated with acute kidney injury (AKI) after severe trauma. ⋯ In critically ill trauma patients, plasma levels of the necroptosis mediator RIP3 at 48 h were associated with AKI stage and RBC transfusions.
-
Cecal ligation and puncture (CLP)-induced sepsis is a serious medical condition, caused by a severe systemic infection resulting in a systemic inflammatory response. Recent studies have suggested the therapeutic potential of donors of hydrogen sulfide (H2S), a novel endogenous gasotransmitter and biological mediator in various diseases. The aim of the present study was to assess the effect of H2S supplementation in sepsis, with special reference to its effect on the modulation of regional blood flow. ⋯ Treatment of NaHS at 3 mg/kg i.p. (but not 1 mg/kg or 6 mg/kg), starting 24 h post-CLP, with dosing repeated every 6 h, improved the survival rate in CLP animals. In summary, treatment with 3 mg/kg H2S-when started in a delayed manner, when CLP-induced organ injury, inflammation and blood flow redistribution have already ensued-improves blood flow to several organs, protects against multiple organ failure, and reduces the plasma levels of multiple pro-inflammatory mediators. These findings support the view that H2S donation may have therapeutic potential in sepsis.
-
Fluid responsiveness is proposed as a physiology-based method to titrate fluid therapy based on preload dependence. The objectives of this study were to determine if a fluid responsiveness protocol would decrease progression of organ dysfunction, and a fluid responsiveness protocol would facilitate a more aggressive resuscitation. ⋯ In this study of a "preshock" population, there was no change in progression of organ dysfunction with a fluid responsiveness protocol. A noninvasive fluid responsiveness protocol did facilitate delivery of an increased volume of fluid. Additional properly powered and enrolled outcomes studies are needed.
-
Shed Pleural Blood from Traumatic Hemothorax Contains Elevated Levels of Pro-Inflammatory Cytokines.
The autotransfusion of unwashed (or unprocessed) shed hemothorax blood (USHB) in trauma patients is widely assumed to be beneficial; however, the inflammatory potential of shed pleural blood has not been thoroughly studied. Since previous studies have documented marked changes in coagulation function of shed pleural blood, we hypothesized that its level of inflammatory cytokines would be elevated. ⋯ USHB, even collected within the accepted four-hour window, contains significantly elevated cytokine levels, suggesting the potential for deleterious effects from autotransfusion. Randomized trials are needed to determine the safety and efficacy of autotransfusion in trauma patients.
-
Ischemic/reperfusion injury (IRI) is the most common cause of acute kidney injury (AKI). Murine studies report that pretreatment with 17β-estradiol protects against AKI using multiple mechanisms, but how 17β-estradiol is involved in regenerating tubular cells is unknown. To visualize the kidney injury and repair, we used 17β-estradiol to treat rats with postischemic acute kidney injury. ⋯ The number of PCNA-positive (PCNA) cells was significantly higher in post-IRI kidneys on day 1 in 17β-estradiol-treated rats. Moreover, vimentin and E-cadherin cells, which were interpreted as regeneration markers, were expressed earlier and significantly more copiously in 17β-estradiol-treated rats. We hypothesize that 17β-estradiol attenuates IRI-induced AKI by reducing inflammation and accelerating injured tubular cell regeneration.