Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
In patients with sepsis-induced multi-organ dysfunction syndrome, diverging patterns of oedema formation and loss of function in organs such as lung and kidney suggest that endothelial permeability-regulating molecular responses are differentially regulated. This potential differential regulation has been insufficiently studied at the level of components of adherens and tight junctions. We hypothesized that such a regulation by endothelial cells in sepsis takes place in an organ-specific manner. ⋯ In contrast, in kidney we found expression patterns of these molecules compatible with decreased permeability. Finally, we partially corroborated our findings in mouse kidney in human kidneys from septic patients. These findings may help to understand the clinical difference in the extent of oedema formation in kidney and lung in sepsis-associated organ failure.
-
The anti-inflammatory effect of miR-155 was closely linked to transforming growth factor-β-activated kinase-1-binding protein 2 (TAB2) and autophagy. This study investigated the role of miR-155 in attenuation of septic lung injury through TAB2 and autophagy in mouse model and in vitro. ⋯ The current study observed a higher level of miR-155 in the BALF from sepsis patients with acute respiratory distress syndrome and demonstrated that miR-155 alleviated inflammation in septic lung injury in mouse and cell models by inducing autophagy via inhibition of TAB2.