Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Burn patients suffer muscle mass loss associated with hyperinflammation and hypercatabolism. The mitochondria are affected by this metabolic alteration. Mitochondrial fission activates a caspase cascade that ultimately leads to cell death. We postulate that burn-induced muscle loss is associated with increased mitochondrial fission and subsequent functional impairment. Further, we investigated whether the cytokine IL-6 plays a major role in mitochondrial fission-associated cell death after burn. ⋯ Burn serum caused muscle cell death associated with increased mitochondrial fission and functional impairment. This alteration was alleviated with IL-6 antibody treatment, suggesting the cytokine plays a role in mitochondrial changes in muscle after systemic injury.
-
Increased activation of CD95/Fas by Fas ligand in viral hepatitis and autoimmunity is involved in pathogenesis of fulminant hepatitis and liver failure. We designed a bile-acid phospholipid conjugate ursodeoxycholyl lysophosphatidylethanolamide (UDCA-LPE with LPE containing oleate at the sn-1) as a hepatoprotectant that was shown to protect against fulminant hepatitis induced by endotoxin. We herein further assessed the ability of UDCA-LPE to prevent death receptor CD95/Fas-induced fulminant hepatitis. ⋯ Moreover, UDCA-LPE attenuated inflammatory response by lowering the levels of Jo-2-induced proinflammatory cytokines TNF-α, IL-6, and IL-1β in liver and serum. UDCA-LPE was also able to decrease the levels of stimulated Th1/Th17 cytokines in Jo-2-primed isolated splenocytes. Taken together, UDCA-LPE exhibited potent anti-inflammatory effects against CD95/Fas-induced fulminant hepatitis.
-
Repeated binge-like alcohol intoxication (RBAI) induces whole-body insulin resistance, which is predicted to increase the risk for metabolic syndrome and type 2 diabetes. Previously, we showed that acute alcohol intoxication increases mesenteric lymphatic permeability, perilymphatic adipose tissue (PLAT) inflammation, and circulating lipopolysaccharide levels in rats. We hypothesize that mesenteric lymphatic hyperpermeability, adipose tissue inflammation and associated dysregulated adipokine expression, and insulin signaling are central mechanisms underlying whole-body metabolic dysregulation resulting from RBAI. ⋯ RBAI resulted in increased lymphatic permeability, MFAT-specific expression of inflammatory cytokines and markers of inflammatory cells (macrophages, dendritic, and T cells), decreased circulating adiponectin and visfatin levels, and MFAT-specific attenuation of insulin-stimulated protein kinase B phosphorylation (Ser) compared with dextrose-treated control animals. These results suggest that RBAI-induced mesenteric lymphatic hyperpermeability promotes inflammatory milieu, decreased insulin-sensitizing adipokines, and impaired insulin signaling in MFAT, which we propose may be an early event preceding systemic metabolic dysregulation. We speculate that RBAI-induced increase in gut-derived toxins, promoting lymphatic leak, and MFAT inflammatory milieu are mechanisms deserving further investigation to elucidate lymphatic-MFAT crosstalk events that precede and predispose for alcohol-induced insulin resistance.
-
Sepsis-associated encephalopathy is a major complication during sepsis, and an effective treatment remains unknown. Although minocycline (MINO) has neuroprotective effects and is an attractive candidate for treating sepsis-associated encephalopathy, the effect of MINO on synaptic plasticity during sepsis is still unclear. In the present study, we investigated the effects of MINO on long-term potentiation (LTP) in the hippocampus in a cecal ligation and puncture (CLP) mouse model. ⋯ High doses of MINO prevented the LTP impairment during sepsis in the CLP + MINO group. Interleukin (IL)-1ra administration ameliorated LTP impairment only in the CLP + vehicle group (P < 0.05); it had no additional effects on LTP in the CLP + MINO group. In conclusion, we have provided the first evidence that MINO prevents impaired LTP related to sepsis-induced encephalopathy in the mouse hippocampus, and that mechanisms associated with IL-1 receptor activity may be involved.
-
Several direct oral anticoagulants (DOACs), including direct thrombin and factor Xa inhibitors, have been approved as alternatives to vitamin K antagonist anticoagulants. As with any anticoagulant, DOAC use carries a risk of bleeding. In patients with major bleeding or needing urgent surgery, reversal of DOAC anticoagulation may be required, presenting a clinical challenge. ⋯ We find that in addition to varied species being used, there is variability in the models and assays used between studies; we suggest that blood loss (bleeding volume) is the most clinically relevant measure of DOAC anticoagulation-related bleeding and its reversal. The studies covered indicate that both PCCs and specific reversal agents have the potential to be used as part of a clinical strategy for DOAC reversal. For the future, we advocate the development and use of standardized, clinically, and pharmacologically relevant animal models to study novel DOAC reversal strategies.