Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Decreased levels of endogenous hydrogen sulfide (H2S) contribute to atherosclerosis, whereas equivocal data are available on H2S effects during sepsis. Moreover, H2S improved glucose utilization in anaesthetized, ventilated, hypothermic mice, but normothermia and/or sepsis blunted this effect. The metabolic effects of H2S in large animals are controversial. ⋯ During resuscitated septic shock in swine with CAD, GYY4137 shifted metabolism to preferential carbohydrate utilization. Increased troponin levels are possibly due to reduced local NO availability. Cautious dosing, the timing of GYY4137 administration, and interspecies differences most likely account for the absence of any previously described anti-inflammatory or organ-protective effects of GYY4137 in this model.
-
The role of interleukin-6 (IL-6) in physiological processes and disease is poorly understood. The hypothesis tested in this study was that selective alpha7 acetylcholine receptor (α7AChR) agonist, GTS-21, releases IL-6 in association with myonuclear accretion and enhances insulin signaling in muscle cells, and improves survival of burn injured (BI) mice. The in vitro effects of GTS-21 were determined in C2C12 myoblasts and 7-day differentiated myotubes (myotubes). ⋯ The 75% mortality in burned WT mice was reduced to 0% with GTS-21. The in vitro findings suggest that GTS-21-induced IL-6 release from muscle is mediated via α7AChRs upstream of Stat-3 and -5 pathways and is associated with myonuclear accretion, possibly via MyoD and Pax7 expression. GTS-21 in vivo improves survival in burned WT mice and IL6KO mice, suggesting a potential therapeutic application of α7AChR agonists in the treatment of BI.
-
To generate and maintain functional T-cell receptor diversity, thymocyte development is tightly organized. Errors in this process may have dramatic consequences, provoking, for example, autoimmune diseases. Probably for this reason, the thymus reacts to septic stress with involution, decreasing the numbers of thymocytes. ⋯ The number of immature single positive thymocytes was most marked diminished (CLP: 6.54 × 10 ± 3.79 × 10 vs. sham: 4.54 × 10 ± 7.66 × 10 cells/thymus [24 h], CLP: 2.60 × 10 ± 2.14 × 10 vs. sham: 2.17 × 10 ± 1.90 × 10 cells/thymus [48 h]), and was consequently associated with the highest rate of apoptosis (8.4 [CLP] vs. 2.2% [sham]), the reduction in double positive thymocytes being associated with a smaller apoptotic response (number, CLP: 2.33 × 10 ± 1.38 × 10 vs. sham: 1.07 × 10 ± 2.72 × 10 cells/thymus [24 h], CLP: 2.34 × 10 ± 9.08 × 10 vs. sham: 3.5 × 10 ± 9.62 × 10 cells/thymus [48 h]; apoptosis: 2.5% [CLP] vs. 0.7% [sham]). Analysis of T-cell receptor excision circles revealed that the emigration of mature thymocytes was not inhibited. Real-time qPCR analysis revealed upregulation of pro-apoptotic Bim expression and suggested interference between Notch receptor expression on thymocytes and the respective ligands on thymic stromal cells during CLP-dependent sepsis, which might be responsible for the altered thymocyte viability in CLP-dependent sepsis.
-
Repeated binge-like alcohol intoxication (RBAI) induces whole-body insulin resistance, which is predicted to increase the risk for metabolic syndrome and type 2 diabetes. Previously, we showed that acute alcohol intoxication increases mesenteric lymphatic permeability, perilymphatic adipose tissue (PLAT) inflammation, and circulating lipopolysaccharide levels in rats. We hypothesize that mesenteric lymphatic hyperpermeability, adipose tissue inflammation and associated dysregulated adipokine expression, and insulin signaling are central mechanisms underlying whole-body metabolic dysregulation resulting from RBAI. ⋯ RBAI resulted in increased lymphatic permeability, MFAT-specific expression of inflammatory cytokines and markers of inflammatory cells (macrophages, dendritic, and T cells), decreased circulating adiponectin and visfatin levels, and MFAT-specific attenuation of insulin-stimulated protein kinase B phosphorylation (Ser) compared with dextrose-treated control animals. These results suggest that RBAI-induced mesenteric lymphatic hyperpermeability promotes inflammatory milieu, decreased insulin-sensitizing adipokines, and impaired insulin signaling in MFAT, which we propose may be an early event preceding systemic metabolic dysregulation. We speculate that RBAI-induced increase in gut-derived toxins, promoting lymphatic leak, and MFAT inflammatory milieu are mechanisms deserving further investigation to elucidate lymphatic-MFAT crosstalk events that precede and predispose for alcohol-induced insulin resistance.
-
Changes in tissue impedance (Ω) have been proposed as early signs of impaired tissue perfusion. We hypothesized that hemorrhage may induce early changes in alimentary tract tissue impedance and that these can be detected by impedance spectroscopy. We evaluated impedance spectroscopy in an acute hemorrhage model in pigs. ⋯ Gastrointestinal impedance spectroscopy does not detect early changes in tissue perfusion during progressive hemorrhage or retransfusion. Ω spectroscopy is unlikely to provide any additional information of hypovolemia-induced early changes in gastrointestinal perfusion.