Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
We hypothesized that aromatic microbial metabolites (AMM), such as phenyllactic (PhLA), p-hydroxyphenylacetic (p-HPhAA), and p-hydroxyphenyllactic (p-HPhLA) acids, contribute to the pathogenesis of septic shock. ⋯ AMM are involved in the pathogenesis of septic shock.
-
The farnesoid X receptor (FXR) plays an important role in bile acid metabolism, intestinal homeostasis, and intestinal ischemia-reperfusion (I/R) injury. We aimed to clarify the potential effects of FXR on intestinal epithelial cell tolerance to intestinal I/R injury and reveal the underlying mechanisms. An intestinal I/R injury model was established by the occlusion of the superior mesenteric artery for ischemia for 1 h, followed by reperfusion for 4 h in C57BL/6 (wild type [WT]) and FXR mice. ⋯ CSE expression increased after intestinal I/R injury in WT but not in FXR mice. INT-747 enhanced Caco-2 cell viability and inhibited inflammatory response by blocking the NF-κB pathway after OGD/R injury, which was diminished by a CSE-specific inhibitor (PAG). Thus, we demonstrated that FXR activation enhances intestinal epithelial cell tolerance to I/R by suppressing the inflammatory response and NF-κB pathway via CSE mediation.