Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Background: Severe progression of coronavirus disease 2019 (COVID-19) causes respiratory failure and critical illness. Recently, COVID-19 has been associated with heparanase (HPSE)-induced endothelial barrier dysfunction and inflammation, so called endothelitis, and therapeutic treatment with heparin or low-molecular-weight heparin (LMWH) targeting HPSE has been postulated. Because, up to this date, clinicians are unable to measure the severity of endothelitis, which can lead to multiorgan failure and concomitant death, we investigated plasma levels of HPSE and heparin-binding protein (HBP) in COVID-19 intensive care patients to render a possible link between endothelitis and these plasma parameters. ⋯ Conclusion: Our results demonstrated that patients, who recover from COVID-19-induced vascular and pulmonary damage and were discharged from the intensive care unit, have significantly higher plasma HPSE level than patients who succumb to COVID-19. Therefore, HPSE is not suitable as marker for disease severity in COVID-19 but maybe as marker for patient's recovery. In addition, patients receiving therapeutic heparin treatment displayed significantly lower heparanse plasma level than upon therapeutic treatment with LMWH.
-
Introduction: The optimal management strategies for patients with polytraumatic injuries that include traumatic brain injury (TBI) are not well defined. Specific interventions including tranexamic acid (TXA), propranolol, and hypertonic saline (HTS) have each demonstrated benefits in patient mortality after TBI, but have not been applied to TBI patients with concomitant hemorrhage. The goals of our study were to determine the inflammatory effects of resuscitation strategy using HTS or shed whole blood (WB) and evaluate the cerebral and systemic inflammatory effects of adjunct treatment with TXA and propranolol after combined TBI + hemorrhagic shock. ⋯ Conclusions: Whole blood resuscitation can reduce the acute postinjury neuroinflammatory response after combined TBI/shock compared with HTS. The addition of either propranolol or TXA may modulate the postinjury systemic and cerebral inflammatory response with more improvements noted after propranolol administration. Multimodal treatment with resuscitation and pharmacologic therapy after TBI and hemorrhagic shock may mitigate the inflammatory response to these injuries to improve recovery.
-
Background: Dexmedetomidine (DEX) attenuates intestinal I/R injury, but its mechanism of action remains to be further elucidated. Protein disulfide isomerase A3 (PDIA3) has been reported as a therapeutic protein for the prevention and treatment of intestinal I/R injury. This study was to investigate whether PDIA3 is involved in intestinal protection of DEX and explore the underlying mechanisms. ⋯ PDIA3 cKO in the intestinal epithelium have reversed the protective effects of DEX. Moreover, yohimbine also reversed the intestinal protection of DEX and downregulated the messenger RNA and protein levels of PDIA3. Conclusion: DEX prevents PDIA3 decrease by activating α2-AR to inhibit intestinal I/R-induced inflammation, ER stress-dependent apoptosis, and oxidative stress in mice.
-
Aims: A rapid heart rate (HR) that occurs after cardiopulmonary resuscitation (CPR) is a short-term compensatory mechanism preserving cardiac output. However, if of long duration, it is unfavorable for myocardial function postresuscitation because of disrupted balance between myocardial oxygen supply and demand. This raises the assumption that such a sustained fast HR should be regulated. ⋯ Serum cardiac troponin I and epinephrine concentration were significantly higher in the ivabradine group (all P < ?0.01). Survival duration was significantly shortened in the ivabradine group as compared with the saline group (388 vs. 526 min, P < ?0.01). Conclusions: Ivabradine-induced HRR increases the severity of postresuscitation myocardial dysfunction and shortens survival duration in a rat model of CPR.