Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
The pathophysiology of sepsis-associated acute kidney injury (S-AKI) is not well elucidated. Platelets have been reported to play a critical role in the pathogenesis of AKI, but the true mechanism remains unknown. Herein, we established a mouse model of S-AKI by cecal ligation and puncture (CLP). ⋯ The results indicated that platelet TTR can cause reactive oxygen species production and apoptosis in HK2 cells. Further research found that platelet TTR can also result in increased levels of mRNA and protein for protein kinase B (AKT), phosphatidylinositol 3-kinase (PI3K), and extracellular regulated protein kinase (ERK), as analyzed by real-time quantitative polymerase chain reaction (RT-qPCR) and western blotting. In conclusion, platelet-derived TTR may be one kind of DAMPs that plays an important role in the development of S-AKI.
-
The development of targeted biological therapies for coronavirus disease 2019 (COVID-19) requires reliable biomarkers that could help indicate how patients are responding. The hyperactivation of inflammasomes by the SARS-CoV2 virus is hypothesized to contribute to a more severe course of the COVID-19 disease. Therefore, we aimed to evaluate the prognostic value of several inflammasome-related cytokines and proteins upon admission to the intensive care unit (ICU). ⋯ We found that the systemic markers of activation of inflammasomes in critically ill COVID-19 patients were not directly related to outcome. Therefore, potential interventions aimed at the inflammasome pathway in this group of patients may be of limited effectiveness and should be biomarker-guided.
-
Interleukin-38 (IL-38), a new type of cytokine, is involved in processes such as tissue repair, inflammatory response, and immune response. However, its function in pneumonia caused by Pseudomonas aeruginosa (P. aeruginosa) is still unclear. ⋯ To summarize, the above findings provide additional insights into the mechanism of IL-38 in the treatment of P. aeruginosa pneumonia.
-
Intratracheal (IT) lipopolysaccharide (LPS) causes severe acute lung injury (ALI) and systemic inflammation. CMT-3 has pleiotropic anti-inflammatory effects including matrix metalloproteinase (MMP) inhibition, attenuation of neutrophil (PMN) activation, and elastase release. CMT-3's poor water solubility limits its bioavailability when administered orally for treating ALI. We developed a nano-formulation of CMT-3 (nCMT-3) to test the hypothesis that the pleiotropic anti-inflammatory activities of IT nCMT-3 can attenuate LPS-induced ALI. ⋯ Pre-treatment with nCMT3 significantly attenuates LPS-induced lung injury/inflammation by multiple mechanisms including: MMP activation, PMN elastase, sTREM-1 release, and NLRP3 inflammasome/caspase-1 activation.