Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Background: Cardiac arrest (CA) is one of the leading causes of death worldwide. Endoplasmic reticulum (ER) stress and ferroptosis are proven pathological mechanisms implicated in neuronal damage. Baicalein, a ferroptosis Inhibitor, improved outcomes after traumatic brain injury. ⋯ Conclusion: Ferroptosis and ER stress are both involved in brain injury after ROSC. Baicalein alleviates brain injury via suppressing the ferroptosis and ER stress, and reduces ROS partly through inhibiting ER stress. Baicalein is a potential drug to relieve brain injury after ROSC.
-
Observational Study
Alteration in shear wave elastography is associated with acute kidney injury: A prospective observational pilot study.
Background: Kidney stiffness could change during kidney disease. We hypothesize that acute kidney injury (AKI) would increase renal stiffness. Therefore, evaluating kidney Young's modulus (YM; a measure of tissue stiffness) using shear wave elastography (SWE) might help to diagnose AKI. ⋯ However, it has no advantage over NGAL and KIM-1. Trial Registration: Chinese Clinical Trial Registry No: ChiCTR2200061725. Retrospectively registered July 1, 2022, https://www.chictr.org.cn/showproj.aspx?proj=169359 .
-
Background: CircRNA regulates sepsis-induced acute kidney injury (AKI). CircNRIP1 is overexpressed in the blood of AKI patients, but its role in septic AKI occurrence remains unknown. Methods: Human kidney 2 (HK2) cells were stimulated using lipopolysaccharide (LPS) to generate a septic AKI cell model. ⋯ MiR-339-5p bound to OXSR1, and circNRIP1 modulated OXSR1 expression by interacting with miR-339-5p. Further, ectopic expression of OXSR1 relieved circNRIP1 knockdown-mediated effects in LPS-induced HK2 cells. Conclusion: CircNRIP1 depletion ameliorated LPS-induced HK2 cell damage by regulating the miR-339-5p/OXSR1 pathway.
-
Traumatic brain injury (TBI) is a kind of disease with high morbidity, mortality, and disability, and its pathogenesis is still unclear. Research shows that nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) activation in neurons and astrocytes is involved in neuroinflammatory cascades after TBI. What is more, polydatin (PD) has been shown to have a protective effect on TBI-induced neuroinflammation, but the mechanisms remain unclear. ⋯ More importantly, PD could inhibit the level of SOD2 Ac-K122, NLRP3, and cleaved caspase-1 and promote the expression of SOD2 after TBI both in vivo and in vitro. Polydatin also inhibited mtROS accumulation and MMP collapse after stretching injury. These results indicated that PD inhibited SOD2 acetylation to alleviate NLRP3 inflammasome activation, thus acting a protective role against TBI neuroinflammation.
-
Aim: The purpose of this study was to investigate the effect of esmolol (ES) on LPS-induced cardiac injury and the possible mechanism. Methods: Sepsis was induced by i.p. injection of LPS (10 mg/kg) in male Sprague-Dawley rats pretreated with ES, 3-methyladenine or rapamycin. The severity of myocardial damage was analyzed by hematoxylin-eosin staining, and myocardial damage scores were calculated. ⋯ Pretreatment of LPS-treated rats with ES or rapamycin reduced myocardial injury (release of cardiac troponin, myocardial damage score) and increased autophagy (LC3-II, beclin-1, p-AMPK, and p-ULK1 levels and autophagosome numbers) at 12 and 24 h. In contrast, 3-methyladenine showed no effect. Conclusion: Esmolol alleviates LPS-induced myocardial damage through activating the AMPK/mTOR/ULK1 signal pathway-regulated autophagy.