Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Objectives: Systemic ischemia-reperfusion triggered by cardiac arrest (CA) and resuscitation often causes postresuscitation multiple organ injuries. Mesenchymal stem cells (MSCs) have been proven to be a promising treatment for regional renal and intestinal ischemia reperfusion injuries. This study aimed to investigate the effects of MSCs on renal and intestinal injuries after cardiopulmonary resuscitation (CPR) in a porcine CA model. ⋯ Cell apoptosis and ferroptosis, which were indicated by the levels of apoptotic cells, iron deposition, lipid peroxidation, antioxidants, and ferroptosis-related proteins, were observed in renal and intestinal tissues after resuscitation in the CA/CPR and CA/CPR + MSC groups. Nevertheless, both were significantly milder in the CA/CPR + MSC group than in the CA/CPR group. Conclusions: MSC administration was effective in alleviating postresuscitation renal and intestinal injuries possibly through inhibition of cell apoptosis and ferroptosis in a porcine CA model.
-
Objective: Based on the functions of immunoregulation and signal transduction, septic peripheral blood sequencing and bioinformatics technology were used to screen potential core targets. Methods: Peripheral blood of 23 patients with sepsis and 10 normal volunteers underwent RNA-seq processing within 24 hours after admission to the hospital. Data quality control and differential gene screening were performed based on R language ( P < 0.01; log2FC ≥ 2). ⋯ Conclusions: CD160, KLRG1, S1PR5, and RGS16 were mainly located in human peripheral blood NK-T cells. Sepsis participants expressed lower levels of S1PR5, CD160, and KLRG1, while sepsis participants expressed higher levels of RGS16. This suggests that they may be potential research targets for sepsis.