Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Blast lung injuries (BLIs) are frequent because of industrial accidents and terrorist groups. Bone marrow mesenchymal stem cells (BMSCs) and exosomes derived from BMSCs (BMSCs-Exo) have become a hot topic in modern biology because of their significance in damage healing, immune regulation, and gene therapy. The aim of this study is to investigate the effect of BMSCs and BMSCs-Exo on BLI in rats caused by gas explosion. ⋯ Through histopathology and changes in malondialdehyde (MDA) and superoxide dismutase (SOD) contents, we discovered that oxidative stress and inflammatory infiltration in the lungs were significantly reduced by BMSCs and BMSCs-Exo. After treatment with BMSCs and BMSCs-Exo, apoptosis-related proteins, such as cleaved caspase-3 and Bax, were significantly decreased, and the ratio of Bcl-2/Bax was significantly increased; the level of pyroptosis-associated proteins, including NLRP3, GSDMD-N, cleaved caspase-1, IL-1β, and IL-18, were decreased; autophagy-related proteins, beclin-1 and LC3, were downregulated while P62 was upregulated; the number of autophagosomes was decreased. In summary, BMSCs and BMSCs-Exo attenuate BLI caused by gas explosion, which may be associated with apoptosis, aberrant autophagy, and pyroptosis.
-
Background: Previous trials evaluated the incidence of critical illness-related corticosteroid insufficiency (CIRCI) using 250 μg adrenocorticotropic hormone (ACTH). However, this supraphysiological dose could result in false-positive levels. We aimed to determine the incidence of CIRCI in septic patients using a 1 μg ACTH stress test. ⋯ In addition, the CIRCI group had a shorter time to develop AKI and a higher probability of developing AKI (4 days and 44.6%, respectively) in comparison with the non-CIRCI group (6 days and 45.57%, respectively). Conclusion: We concluded that the CIRCI group had a lower mean survival rate and a higher incidence of AKI. We recommend the use of 1 μg ACTH test in septic shock patients to identify this subgroup of patients.
-
Objective: Sepsis is a complex disease characterized by an inflammatory response and tissue hypoxia. Hypoxia-inducible factor 1α (HIF-1α) expression level is regulated by hypoxia and inflammation. This study aimed to explore the correlation between HIF-1α expression level and sepsis by bioinformatics analysis and clinical investigation. ⋯ The results of the restricted cubic splines model indicated a U-shaped relationship between HIF-1α expression level and intensive care unit (ICU) mortality. Univariate and multivariate linear regression analyses indicated that septic patients with the elevated HIF-1α expression levels had shorter length of ICU stay versus those with the lower HIF-1α expression levels. Conclusion: Hypoxia-inducible factor 1α expression level can be used for diagnosing disease, assessing severity, and predicting length of ICU stay in septic patients.
-
Background : Mesenchymal stem cells (MSCs) can be activated by different bacterial toxins. Lipopolysaccharides and Shiga Toxin (Stx) are the main toxins necessary for hemolytic uremic syndrome development. The main etiological event in this disease is endothelial damage that causes glomerular destruction. ⋯ Addition of conditioned media of iPSC-MSC treated with LPS + Stx, decreased the capacity of human microvascular endothelial cells 1 to close a wound, and did not favor tubulogenesis. Proteomic analysis of iPSC-MSC treated with LPS and/or Stx revealed specific protein secretion patterns that support the functional results described. Conclusions : iPSC-MSC activated by LPS acquired a proinflammatory profile that induces migration and adhesion to extracellular matrix proteins but the addition of Stx did not activate any repair program to ameliorate endothelial damage, indicating that the use of iPSC-MSC to regenerate endothelial injury caused by LPS and/or Stx in hemolytic uremic syndrome could not be the best option to consider to regenerate a tissue injury.
-
Acute respiratory distress syndrome (ARDS) is characterized by uncontrolled inflammation, which manifests as leukocyte infiltration and lung injury. However, the molecules that initiate this infiltration remain incompletely understood. We evaluated the effect of the nuclear alarmin IL-33 on lung damage and the immune response in LPS-induced lung injury. ⋯ We found that IL-33 promoted inflammation through NKT cells in ARDS. In summary, our results demonstrated that the IL-33/ST2 axis promotes the early uncontrolled inflammatory response in ARDS by activating and recruiting iNKT cells. Therefore, IL-33 and NKT cells may be therapeutic target molecules and immune cells, respectively, in early ARDS cytokine storms.