Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Sepsis is the most frequent risk factor for acute kidney injury (AKI) in critically ill infants. Sepsis-induced dysregulation of kidney microcirculation in newborns is unresolved. The objective of this study was to use the translational swine model to evaluate changes in kidney function during the early phase of sepsis in newborns and the impact of fluid plus norepinephrine resuscitation. ⋯ Resuscitation also attenuated sepsis-induced increases in the levels of plasma C-reactive protein, proinflammatory cytokines, lactate dehydrogenase, alanine transaminase, aspartate aminotransferase, and renal NLRP3 inflammasome. These data suggest that newborn pigs subjected to cecal ligation and puncture develop hypodynamic septic AKI. Early implementation of resuscitation lessens the degree of inflammation, AKI, and liver injury.
-
Background: The high mortality rates of patients who are resuscitated from cardiac arrest (CA) are attributed to post cardiac arrest syndrome (PCAS). This study evaluated the effect of hyperoxygenation and targeted temperature management (TTM) on PCAS in rats with different causes of CA. Methods and Results: One hundred sixty-eight Sprague-Dawley rats were equally divided into asphyxial and dysrhythmic groups. ⋯ Compared with NO-NT (57.7% ± 14.9% and 40.3% ± 7.8%), the collagen volume fraction and the proportion of fluoro-jade B-positive area in HO-HT (14.0% ± 5.7% and 28.0% ± 13.3%) were significantly reduced. Conclusion: The beneficial effects of hyperoxygenation and TTM are dependent on the cause of arrest: hyperoxygenation benefits asphyxial, whereas TTM benefits dysrhythmic CA. The combination of hyperoxygenation and TTM could effectively improve the functional outcome of PCAS regardless of the cause of CA.
-
Background: With the advancement of medicine and the development of technology, the limiting factors of aeromedical evacuation are gradually decreasing, and the scope of indications is expanding. However, the hypobaric and hypoxic environments experienced by critically ill patients in flight can cause lung injury, leading to inflammation and hypoxemia, which remains one of the few limiting factors for air medical evacuation. This study aimed to examine the mechanism of secondary lung injury in rat models of acute lung injury that simulate aeromedical evacuation. ⋯ Results: Simulated aeromedical evacuation exacerbated pathological damage to lung tissue and increased the release of inflammatory cytokines in serum as well as the reactive oxygen species levels and the protein levels of HIF-1α, BNIP3, and NIX in lung tissue. Pretreatment with dimethyloxalylglycine resulted in increases in the protein expression of HIF-1α, BNIP3, and NIX. Conclusion: Simulated aeromedical evacuation leads to secondary lung injury through mitophagy.
-
Objectives: Puerarin, the principal active constituent extracted from Pueraria, is believed to confer protection against sepsis-induced lung injury. The study aimed to elucidate the role and mechanism of Mst1/ERS in puerarin-mediated protection against acute lung injury (ALI). Methods: Monolayer vascular endothelial cell permeability was assessed by gauging the paracellular flow of FITC-dextran 40,000 (FD40). ⋯ Nevertheless, the inhibitory impact of puerarin on vascular endothelial cell injury, lung injury, and endoplasmic reticulum stress (ERS) was diminished by Mst1 overexpression. Conclusion: These findings demonstrated that the Mst1/ERS signaling pathway played a pivotal role in the development of LPS-induced vascular endothelial cell dysfunction and ALI. Puerarin exhibited the ability to attenuate LPS-induced vascular endothelial cell dysfunction and ALI by inhibiting the Mst1/ERS signaling pathway.
-
The adenosine concentration and forkhead box protein (Foxp3) expression in T regulatory cells (T regs ) are increased during sepsis. However, the mechanism by which adenosine induces Foxp3 expression is incompletely understood. A cecal ligation and puncture (CLP) model was constructed using C57BL/J mice. ⋯ A2aR blockade or inhibition of CREB expression inhibited Foxp3 expression in T regs. In the CLP model, use of CREB inhibitors could inhibit Foxp3 expression and reduce the bacterial load. In summary, adenosine in sepsis promotes CREB phosphorylation via A2aR which, in turn, upregulates Foxp3 expression in T regs .