Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Hemorrhagic shock has recently been shown to cause shedding of a carbohydrate surface layer of endothelial cells known as the glycocalyx. This shedding of the glycocalyx is thought to be a mediator of the coagulopathy seen in trauma patients. Clinical studies have demonstrated increases in shed glycocalyx in the blood after trauma, and animal studies have measured glycocalyx disruption in blood vessels in the lung, skeletal muscle, and mesentery. However, no study has measured glycocalyx disruption across a wide range of vascular beds to quantify the primary locations of this shedding. ⋯ We conclude that the endothelium in the lungs and intestine are particularly susceptible to the oxidative stress of hemorrhage-resuscitation, as well as the resulting glycocalyx disruption. Thus, these two vessel beds may be important drivers of coagulopathy in trauma patients.
-
Organ injury by oxidative and inflammatory mediators occurs during ischemia-reperfusion (I/R) of the liver. Remote organ injury secondary to liver I/R increases the systemic insult. Tender coconut water (TCW) has been studied in chemical and fructose-induced liver injury but its ability to decrease tissue injury in clinically relevant injury models is unknown. ⋯ To examine macrophage activation as a potential mechanism, TCW pretreatment decreased the amount of nitrite produced by RAW264.7 macrophages stimulated with LPS. The levels of Nos2, Il1b, Tnf, and Il6 were decreased while Il10 and Hmox1 mRNA levels were significantly up-regulated upon LPS stimulation of TCW pretreated RAW264.7 macrophages. Collectively, our results indicate that TCW decreased hepatic I/R-mediated damage to liver and lung and suggest that decreased macrophage activation contributes to this effect.