Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Sepsis-induced intestinal hyperpermeability is mediated by disruption of the epithelial tight junction, which is closely associated with the peri-junctional actin-myosin ring. Genetic deletion of myosin light chain kinase (MLCK) reverses intestinal hyperpermeability and improves survival in a murine model of intra-abdominal sepsis. In an attempt to determine whether these findings could be translated using a more clinically relevant strategy, this study aimed to determine if pharmacologic inhibition of MLCK using the membrane permeant inhibitor of MLCK (PIK) improved gut barrier function and survival following sepsis. ⋯ Examination of jejunal tight junctions for potential mechanisms underlying increased leak permeability revealed that mice that received PIK had increased phosphorylated MLC without alterations in occludin, ZO-1, or JAM-A. PIK administration was not associated with significant differences in systemic or peritoneal bacterial burden, cytokines, splenic or Peyer's Patches immune cells or intestinal integrity. These results demonstrate that pharmacologic inhibition of MLCK unexpectedly increases mortality, associated with worsened intestinal permeability through the leak pathway, and suggest caution is required in targeting the gut barrier as a potential therapy in sepsis.
-
Dobutamine (DOB) is recommended as an inotrope for septic patients with low cardiac output, but its long-term impact on sepsis-induced cardiomyopathy remains unclear. This study investigated the long-term effect of DOB on septic myocardial dysfunction and injury. Rats were exposed to cecal ligation and puncture (CLP), the intrinsic myocardial function, other organ functions, hemodynamics, inflammatory response, serum myocardial injury biomarkers, myocardial apoptosis, and vascular permeability were determined. ⋯ However, DOB (10.0 μg/kg) increased serum IL-10 level and improved survival in septic rats. These results indicate that the intrinsic myocardial depression occurs earlier than hepatic and renal dysfunction in sepsis and serum cTnI, NT-proBNP, and H-FABP are not suitable as early biomarkers for sepsis-induced myocardial dysfunction. Although DOB treatment (10.0 μg/kg) in the presence of myocardial dysfunction improves survival in septic rats, it neither improves myocardial function and hemodynamics nor attenuates myocardial injury at the later stage of sepsis.
-
We performed a systematic review to investigate the effects of vasopressor-induced hemodynamic changes in adults with shock. We applied a physiological approach using the interacting domains of intravascular volume, heart pump performance, and vascular resistance to structure the interpretation of responses to vasopressors. We hypothesized that incorporating changes in determinants of cardiac output and vascular resistance better reflect the vasopressor responsiveness beyond mean arterial pressure alone. ⋯ Changes in the mean systemic filling pressure analogue and heart pump efficiency were negatively correlated (r2 = 0.57, P < 0.001) while no correlation was found between changes in MAP and heart pump efficiency. We conclude that hemodynamic changes induced by vasopressor therapy are inadequately represented by the change in MAP alone despite its common use as a clinical endpoint. The more comprehensive analysis applied in this review illustrates how vasopressor administration may be optimized.
-
IL-33 and WNT1-inducible secreted protein (WISP1) play central roles in acute lung injury (ALI) induced by mechanical ventilation with moderate tidal volume (MTV) in the setting of sepsis. Here, we sought to determine the inter-relationship between IL-33 and WISP1 and the associated signaling pathways in this process. We used a two-hit model of cecal ligation puncture (CLP) followed by MTV ventilation (4 h 10 mL/kg) in wild-type, IL-33-/- or ST2-/- mice or wild-type mice treated with intratracheal antibodies to WISP1. ⋯ This WISP1 upregulation and WNT β-catenin activation were sensitive to inhibition of the β-catenin/TCF/CBP/P300 nuclear pathway. We show that IL-33 drives WISP1 upregulation and ALI during MTV in CLP sepsis. The identification of this relationship and the associated signaling pathways reveals a number of possible therapeutic targets to prevent ALI in ventilated sepsis patients.