Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Acute traumatic coagulopathy is a complex phenomenon following injury and a main contributor to hemorrhage. It remains a leading cause of preventable death in trauma patients. This phenomenon is initiated by systemic injury to the vascular endothelium that is exacerbated by hypoperfusion, acidosis, and hypothermia and leads to systemic activation of the coagulation cascades and resultant coagulopathy. ⋯ Following localized brain injury, brain-derived extracellular vesicles are released into circulation where they induce a hypercoagulable state that rapidly turns into consumptive coagulopathy. VWF released from injured endothelial cells binds to these extracellular vesicles to enhance their activity in promoting coagulopathy and increasing endothelial permeability. However, there are numerous gaps in our knowledge of VWF following injury, providing a platform for further investigation.
-
Decompensation is a major prehospital threat to survival from trauma/hemorrhage shock (T/HS) after controlling bleeding. We recently showed higher than expected mortality from a combat-relevant rat model of T/HS (27 mL/kg hemorrhage) with tourniquet (TQ) and permissive hypotensive resuscitation (PHR) with Plasmalyte. Mortality and fluid requirements were reduced by resuscitation with 25% albumin presaturated with oleic acid (OA-sat) compared with fatty-acid -free albumin or Plasmalyte. ⋯ Decompensation was due to vascular decompensation rather than loss of cardiac performance. Albumin concentration was lower in decompensating groups, suggesting decreased stressed volume, which may explain the association of low albumin on admission with poor outcomes after trauma. Our findings suggest that acute decompensation may be common after trauma and severe hemorrhage treated with TQ and PHR and OA-sat albumin may benefit early survival and reduce transfusion volume by improving venous constriction and preventing decompensation.
-
Sepsis-induced immunosuppression involves both innate and adaptive immunity and is associated with the increased expression of checkpoint inhibitors, such as programmed cell-death protein 1 (PD-1). The expression of PD-1 is associated with poor outcomes in septic patients, and in models of sepsis, blocking PD-1 or its ligands with antibodies increased survival and alleviated immune suppression. While inhibitory antibodies are effective, they can lead to immune-related adverse events (irAEs), in part due to continual blockade of the PD-1 pathway, resulting in hyperactivation of the immune response. ⋯ Altered survival was associated with improved macrophage phagocytic activity and T-cell production of interferon-γ. Further, myeloperoxidase levels and esterase-positive cells were significantly reduced in LD01-treated mice. Taken together, these data establish that LD01 modulates host immunity and is a viable therapeutic candidate for alleviating immunosuppression that characterizes sepsis and other infectious diseases.
-
Observational Study
Association Between the Oxygen Consumption: Lactate Ratio and Survival in Critically Ill Patients With Sepsis.
Mitochondrial dysfunction leading to impairment of oxygen extraction, referred to as cytopathic hypoxia, contributes to morbidity in sepsis. Oxygen consumption (VO2) may be a useful measure of the severity of cytopathic hypoxia. We monitored VO2 and carbon dioxide production (VCO2) in septic patients and investigated the association with hospital survival. ⋯ The VO2:lactate ratio was significantly higher in survivors, while there was no association between median VO2 alone and survival. There was a significant difference in change in VCO2 over time between survivors and non-survivors.
-
Extracorporeal life support (ECLS) is a support modality for patients with severe acute respiratory distress syndrome (ARDS) who have failed conventional treatments including low tidal volume ventilation, prone positioning, and neuromuscular blockade. In addition, ECLS can be used for hemodynamic support for patients with cardiogenic shock or following cardiac arrest. ⋯ We then describe how these principles are applied in the management of the novel coronavirus disease 2019 pandemic. Indications, predictors, procedural considerations, and post-cannulation management strategies are discussed.