Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
The world is currently embroiled in a pandemic of coronavirus disease 2019 (COVID-19), a respiratory illness caused by the novel betacoronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The severity of COVID-19 disease ranges from asymptomatic to fatal acute respiratory distress syndrome. In few patients, the disease undergoes phenotypic differentiation between 7 and 14 days of acute illness, either resulting in full recovery or symptom escalation. ⋯ Elevated IL-6 and hypoxia together predisposes patients to pulmonary hypertension, and the presence of asymptomatic hypoxia in COVID-19 further compounds this problem. Due to the similar downstream mediators, we discuss the potential synergistic effects and systemic ramifications of SARS-CoV-2 and influenza virus during co-infection, a phenomenon we have termed "COVI-Flu." Additionally, the differences between CRS and cytokine storm are highlighted. Finally, novel management approaches, clinical trials, and therapeutic strategies toward both SARS-CoV-2 and COVI-Flu infection are discussed, highlighting host response optimization and systemic inflammation reduction.
-
Global cerebral ischemia-induced neuroinflammation causes neurofunctional impairment following cardiac arrest. Previous studies have demonstrated that the activation of protease-activated receptor-2 (PAR-2) contributes to neuroinflammation. In the present study, we aimed to determine the potential treatment effect of PAR-2 inhibition against neuroinflammation in the setting of asphyxial CA (ACA) in rats. ⋯ PAR-2 inhibition diminished neuroinflammation and thereby reduced hippocampal neuronal degeneration and neurocognitive impairment following ACA. This effect was at least partly mediated via the PAR-2/ERK1/2 signaling.