Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Hemorrhagic shock (HS) is accompanied by a pronounced activation of the inflammatory response in which acute lung injury (ALI) is one of the most frequent consequences. Among the pivotal orchestrators of this inflammatory cascade, extracellular cold-inducible RNA-binding protein (eCIRP) emerges as a noteworthy focal point, rendering it as a promising target for the management of inflammation and tissue injury. Recently, we have reported that oligonucleotide poly(A) mRNA mimic termed A 12 selectively binds to the RNA binding region of eCIRP and inhibits eCIRP binding to its receptor TLR4. ⋯ A 12 treatment also decreased lung levels of TNF-α, MIP-2, and KC mRNA expressions. Lung histological injury score, neutrophil infiltration (Ly6G staining and myeloperoxidase activity), and lung apoptosis were significantly attenuated after A 12 treatment. Our study suggests that the capacity of A 12 in attenuating HS-induced ALI and may provide novel perspectives in developing efficacious pharmaceutics for improving hemorrhage prognosis.
-
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. Macrophages play important roles in the inflammatory process of sepsis by secreting chemokines. Chemokine (CC-motif) ligand 2 (CCL-2) is one of the main proinflammatory chemokines secreted by macrophages that plays a critical role in the recruitment of more monocytes and macrophages to the sites of injury in sepsis, but the mechanisms that regulate CCL-2 expression in macrophages during sepsis are still unknown. ⋯ We further confirmed miR-155 regulated SGK3 to increase LPS-induced CCL-2 by using miR-155 mimics and SGK3 overexpression. Thus, our study demonstrates that miR-155 targets SGK3 to increase LPS-induced CCL-2 expression in macrophages, which promotes macrophage chemotaxis and enhances organs injury during endotoxemia. Our study contributed to a better understanding of the mechanisms underlying the inflammatory response during sepsis.
-
Sepsis-induced cardiomyopathy ( SIC ) is a distinct form of myocardial injury that disrupts tissue perfusion and stands as the significant cause of mortality among sepsis patients. Currently, effective preventive or treatment strategies for SIC are lacking. YiQiFuMai injection (YQFM), composed of Panax ginseng C. ⋯ Moreover, GPX4 inhibitor could abolish the effects above. In summary, the study highlights the regulatory effect of YQFM in mitigating myocardial injury. It probably achieves this ameliorative effect by enhancing xCT/GPX4 axis and further reducing ferroptosis.
-
Observational Study
EARLY TRAJECTORY OF VENOUS EXCESS ULTRASOUND (VExUS) SCORE IS ASSOCIATED WITH CLINICAL OUTCOMES OF GENERAL ICU PATIENTS.
Background: Systemic venous congestion, assessed by the venous excess ultrasound (VExUS) score, has been associated with adverse effects, including acute kidney injury (AKI), in patients with cardiac disease. In general intensive care unit (ICU) patients, the association between VExUS score and outcomes is understudied. We aimed to investigate the association between the trajectory of VExUS score within the first 3 days of ICU admission and the composite clinical outcome of major adverse kidney events within 30 days (MAKE30). ⋯ Also, VExUS scores on day 1 or on day 3 and D-VExUS were not associated with development of AKI or mortality. Conclusions: In a general ICU cohort, early trajectory of VExUS score, but not individual VExUS scores at different time points, was associated with the patient-centered MAKE30 outcome. Dynamic changes rather than snapshot measurements may unmask the adverse effects of systemic venous congestion on important clinical outcomes.