Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Glucocorticoids remain a recommended therapy in advanced septic shock despite the often unpredictable response, and our understanding of the mechanisms regulating the steroid and stress response remains limited. Since the initial sequencing of the human glucocorticoid receptor α and β gene (hGRα and hGRβ), only three additional splice variants have been identified--all of which have been postulated to contribute to steroid resistance. During a survey of 97 healthy humans' blood, we identified two novel hGR splice isoforms (hGR-S1 and hGR-S1(-349A) retaining intron H between exons 8 and 9. ⋯ Removal of the 3' untranslated region (3'UTR) of the hGR-S1(-349A) mRNA sequence resulted in a loss of the augmented response. The isoform hGR-S1(-349A) augments the response to steroids, and this significant response appears to be critically regulated by the 3'UTR. The identification and evaluation of these unique hGR isoforms helps further the understanding of the complex genetic regulation of the stress and steroid response.
-
Activation of the complement system has been associated with tissue injury after hemorrhage and resuscitation in animals. We investigated whether administration of recombinant human C1-esterase inhibitor (rhC1-INH), a regulator of complement and contact activation systems, reduces tissue damage and cytokine release and improves metabolic acidosis in a porcine model of hemorrhagic shock. Male Yorkshire swine were assigned to experimental groups and subjected to controlled, isobaric hemorrhage to a target mean arterial pressure of 35 mmHg. ⋯ The tissue-protective effects of rhC1-INH appear to be related to its ability to reduce tissue complement activation and deposition. Recombinant human C1-INH decreased tissue complement activation and deposition in hemorrhaged animals, improved metabolic acidosis, reduced circulating tumor necrosis factor α, and attenuated tissue damage in this model. The observed beneficial effects of rhC1-INH treatment on tissue injury 20 min into severe hypotension present an attractive model of low-volume resuscitation, particularly in situations with a restrictive medical logistical footprint.
-
More than 50% of severely injured patients have chest trauma. Second insults frequently result in acute lung injury (ALI), with sepsis being the main underlying condition. We aimed to develop a standardized, reproducible, and clinically relevant double-hit mouse model of ALI induced by chest trauma and polymicrobial sepsis and to investigate the pathophysiologic role of activated neutrophils. ⋯ Neutrophil depletion significantly diminished lung interleukin 1β and interleukin 6 concentrations and reduced the degree of septic ALI. Here we have established a novel and highly reproducible mouse model of chest trauma-induced septic ALI characterizing a clinical relevant double-hit scenario. In particular, the depletion of neutrophils substantially mitigated the extent of lung injury, indicating a pathomechanistic role for neutrophils in chest trauma-induced septic ALI.
-
The effects of acute and prior exposure to lipopolysaccharide (LPS) and staphylococcal enterotoxin B (SEB) on superoxide release by monocytes were examined in control subjects and in patients with sepsis and septic shock during the acute stage and recovery. High doses of LPS, PMA (phorbol 12-myristate 13-acetate), and SEB stimulated monocyte superoxide release in control subjects (P < 0.05). Pretreatment of normal monocytes with these doses of LPS, PMA, and SEB induced significant hyporesponsiveness to subsequent challenge (P < 0.01), and evidence of cross-tolerance was observed. ⋯ In addition, the superoxide release in response to the same stimuli was significantly increased when compared with release during the acute stage (P < 0.05). These data demonstrate that both LPS and SEB induce hyporesponsiveness to LPS- or SEB-stimulated superoxide release. A similar pattern of hyporesponsiveness was observed during sepsis that may represent a mechanism for modulating the inflammatory response during severe infections.
-
Syndecan 1 plays a novel role in enteral glutamine's gut-protective effects of the postischemic gut.
Syndecan 1 is the predominant heparan sulfate proteoglycan found on the surface of epithelial cells and, like glutamine, is essential in maintaining the intestinal epithelial barrier. We therefore hypothesized that loss of epithelial syndecan 1 would abrogate the gut-protective effects of enteral glutamine. Both an in vitro and in vivo model of gut ischemia-reperfusion (IR) was utilized. ⋯ In vivo, intestinal permeability, inflammation, and injury were increased after gut IR in wild-type mice and further increased in syndecan 1 KO mice. Glutamine's attenuation of IR-induced intestinal hyperpermeability, inflammation, and injury was abolished in syndecan 1 KO mice. These results suggest that syndecan 1 plays a novel role in the protective effects of enteral glutamine in the postischemic gut.