Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
The cellular and biochemical mechanisms leading to acute lung injury (ALI) and subsequent multiple organ failure are only partially understood. To study the potential role of eicosanoids, particularly leukotrienes, as possible mediators of ALI, we used a murine experimental model of ALI induced by hemorrhagic shock after blood removal via cardiac puncture. Neutrophil sequestration, as shown by immunofluorescence and protein leakage into the alveolar space were measured as markers of injury. ⋯ MK886 attenuated neutrophil infiltration and protein extravasation induced by hemorrhagic shock. 5-Lipoxygenase-deficient mice showed reduced neutrophil infiltration and protein extravasation after shock treatment, indicating greatly reduced lung injury. These results support the hypothesis that 5-LO, most likely through the generation of leukotrienes, plays an important role in the pathogenesis of ALI induced by hemorrhagic shock in mice. This pathway could represent a new target for pharmacological intervention to reduce lung damage following severe primary injury.
-
Recent evidence suggests that cell therapy such as the injection of bone marrow-derived mononuclear cells (BMMNCs) can exert protective effects in various conditions associated with ischemia-reperfusion injury. Here, we investigate the effects of BMMNCs on the organ injury/dysfunction induced by hemorrhagic shock (HS). Thirty-seven anesthetized male Wistar rats were subjected to hemorrhage by reducing mean arterial pressure to 35 ± 5 mmHg for 90 min, followed by resuscitation with 20 mL/kg Ringer's lactate administered over 10 min and 50% of the shed blood over 50 min. ⋯ Hemorrhagic shock resulted in significant organ injury/dysfunction (renal, hepatic, neuromuscular) and inflammation (hepatic, lung). In rats subjected to HS, administration of BMMNCs significantly attenuated (i) organ injury/dysfunction (renal, hepatic, neuromuscular) and inflammation (hepatic, lung), (ii) increased the phosphorylation of Akt and glycogen synthase kinase-3β, (iii) attenuated the activation of nuclear factor-κB, (iv) attenuated the increase in extracellular signal-regulated kinase 1/2 phosphorylation, and (v) attenuated the increase in expression of intercellular adhesion molecule-1. Our findings suggest that administration of BMMNCs protects against the induction of early organ injury/dysfunction caused by severe HS by a mechanism that may involve activation of Akt and the inhibition of glycogen synthase kinase-3β and nuclear factor-κB.
-
Gram-negative bacteria remain the leading cause of sepsis, a disease that is consistently in the top 10 causes of death internationally. Curing bacteremia alone does not necessarily end the disease process as other factors may cause inflammatory damage. Bacterial outer membrane vesicles (OMVs) are naturally produced blebs from the outer membrane of gram-negative bacteria, which contain various proteins and lipopolysaccharide (LPS). ⋯ Downstream events such as the recruitment of neutrophils into tissues due to the presentation of vascular adhesion molecules also occur in OMV-treated animals. Although soluble LPS elicits stronger responses than did OMVs, responses to the latter consistently exceeded those associated with lactated Ringer's infusion. These results indicate OMVs, independent of the parent bacteria, do initiate an inflammatory response; however, further studies are required to better characterize the temporal biomolecular interactions involved.
-
Acute lung injury (ALI) is still a leading cause of morbidity and mortality in critically ill patients. Recently, our and other studies have found that hydrogen gas (H₂) treatment can ameliorate the lung injury induced by sepsis, ventilator, hyperoxia, and ischemia-reperfusion. However, the molecular mechanisms by which H₂ ameliorates lung injury remain unclear. ⋯ In addition, i.p. injection of 10 mL/kg hydrogen-rich saline also significantly attenuated the LPS-induced ALI. Collectively, these results demonstrate that molecular hydrogen treatment ameliorates LPS-induced ALI through reducing lung inflammation and apoptosis, which may be associated with the decreased NF-κB activity. Hydrogen gas may be useful as a novel therapy to treat ALI. munosorbent assay; H₂-hydrogen gas; HMGB1-high-mobility group box 1; HS-hydrogen-rich saline; i.t.-intratracheal; KC-keratinocyte-derived chemokine; LPS-lipopolysaccharide; MCP-1-monocyte chemoattractant protein 1; MIP-1α-macrophage inflammatory protein 1α; MIP-2-macrophage inflammatory protein 2; MPO-myeloperoxidase; PBS-phosphate-buffered saline; PMNs-polymorphonuclear neutrophils; TUNEL-deoxynucleotidyl transferase dUTP nick end labeling; W/D-wet-to-dry.
-
Despite significant advances in the care of critically ill patients, acute lung injury continues to be a complex problem with high mortality. The present study was designed to characterize early lipopolysaccharide (LPS)-induced pulmonary injury and small interfering RNA targeting focal adhesion kinase (FAK) as a possible therapeutic tool in the septic lung remodeling process. Male Wistar rats were assigned into endotoxemic group and control group. ⋯ There was fibrotic response in the lung characterized by increased amount in total and specific-type collagen. These data may explain the frequent clinical presentation during sepsis of reduced lung compliance, oxygen diffusion, and pulmonary hypertension. The fact that FAK silencing was protective against lung collagen deposition underscores the therapeutic potential of FAK targeting by small interfering RNA.